Title: | Elevated ozone inhibits isoprene emission of a diploid and a triploid genotype of Populus tomentosa by different mechanisms |
Author(s): | Li S; Feng Z; Yuan X; Wang M; Agathokleous E; |
Address: | "School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, China. School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, China. State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Haidian District, Beijing, China. Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, Beijing, China" |
ISSN/ISBN: | 1460-2431 (Electronic) 0022-0957 (Linking) |
Abstract: | "Ozone (O3) pollution affects plant growth and isoprene (ISO) emission. However, the response mechanism of isoprene emission rate (ISOrate) to elevated O3 (EO3) remains poorly understood. ISOrate was investigated in two genotypes (diploid and triploid) of Chinese white poplar (Populus tomentosa Carr.) exposed to EO3 in an open top chamber system. The triploid genotype had higher photosynthetic rate (A) and stomatal conductance (gs) than the diploid one. EO3 significantly decreased A, gs, and ISOrate of middle and lower leaves in both genotypes. In the diploid genotype, the reduction of ISOrate was caused by a systematic decrease related to ISO synthesis capacity, as indicated by decreased contents of the isoprene precursor dimethylallyl diphosphate and decreased isoprene synthase protein and activity. On the other hand, the negative effect of O3 on ISOrate of the triploid genotype did not result from inhibited ISO synthesis capacity, but from increased ISO oxidative loss within the leaf. Our findings will be useful for breeding poplar genotypes with high yield and lower ISOrate, depending on local atmospheric volatile organic compound/NOx ratio, to cope with both the rising O3 concentrations and increasing biomass demand. They can also inform the incorporation of O3 effects into process-based models of isoprene emission" |
Keywords: | *Populus/metabolism *Ozone/metabolism *Volatile Organic Compounds/metabolism Triploidy Diploidy Plant Breeding Hemiterpenes/metabolism Butadienes/metabolism Photosynthesis Plant Leaves/metabolism Genotype Pentanes/metabolism/pharmacology Bioenergy crops d; |
Notes: | "MedlineLi, Shuangjiang Feng, Zhaozhong Yuan, Xiangyang Wang, Miaomiao Agathokleous, Evgenios eng 41907383/National Natural Science Foundation of China/ KYCX21_1013/Postgraduate Research & Practice Innovation Program of Jiangsu Province/ Research Support, Non-U.S. Gov't England 2022/06/30 J Exp Bot. 2022 Oct 18; 73(18):6449-6462. doi: 10.1093/jxb/erac288" |