Title: | Improved TEA Sensitivity and Selectivity of In(2)O(3) Porous Nanospheres by Modification with Ag Nanoparticles |
Author(s): | Li D; Li Y; Wang X; Sun G; Cao J; Wang Y; |
Address: | "School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China. The Collaboration Innovation Center of Coal Safety Production of Henan Province, Henan Polytechnic University, Jiaozuo 454000, China. School of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China" |
ISSN/ISBN: | 2079-4991 (Print) 2079-4991 (Electronic) 2079-4991 (Linking) |
Abstract: | "A highly sensitive and selective detection of volatile organic compounds (VOCs) by using gas sensors based on metal oxide semiconductor (MOS) has attracted increasing interest, but still remains a challenge in gas sensitivity and selectivity. In order to improve the sensitivity and selectivity of In(2)O(3) to triethylamine (TEA), herein, a silver (Ag)-modification strategy is proposed. Ag nanoparticles with a size around 25-30 nm were modified on pre-synthesized In(2)O(3) PNSs via a simple room-temperature chemical reduction method by using NaBH(4) as a reductant. The results of gas sensing tests indicate that after functionalization with Ag, the gas sensing performance of In(2)O(3) PNSs for VOCs, especially for TEA, was remarkably improved. At a lower optimal working temperature (OWT) of 300 degrees C (bare In(2)O(3) sensor: 320 degrees C), the best Ag/In(2)O(3)-2 sensor (Ag/In(2)O(3) PNSs with an optimized Ag content of 2.90 wt%) shows a sensitivity of 116.86/ppm to 1-50 ppm TEA, about 170 times higher than that of bare In(2)O(3) sensor (0.69/ppm). Significantly, the Ag/In(2)O(3)-2 sensor can provide a response (R(a)/R(g)) as high as 5697 to 50 ppm TEA, which is superior to most previous TEA sensors. Besides lower OWT and higher sensitivity, the Ag/In(2)O(3)-2 sensor also shows a remarkably improved selectivity to TEA, whose selectivity coefficient (S(TEA)/S(ethanol)) is as high as 5.30, about 3.3 times higher than that of bare In(2)O(3) (1.59). The sensitization mechanism of Ag on In(2)O(3) is discussed in detail" |
Keywords: | Ag modification In2O3 Tea gas sensor porous nanospheres; |
Notes: | "PubMed-not-MEDLINELi, Dengke Li, Yanwei Wang, Xiaohua Sun, Guang Cao, Jianliang Wang, Yan eng U1704255 and U1404613/National Natural Science Foundation of China/ Switzerland 2022/05/15 Nanomaterials (Basel). 2022 May 2; 12(9):1532. doi: 10.3390/nano12091532" |