Title: | Large-lateral-area SnO(2) nanosheets with a loose structure for high-performance acetone sensor at the ppt level |
Address: | "National Institute of Advanced Industrial Science and Technology (AIST), 4-205 Sakurazaka, Moriyama, Nagoya, Aichi 463-8560, Japan. National Institute of Advanced Industrial Science and Technology (AIST), 4-205 Sakurazaka, Moriyama, Nagoya, Aichi 463-8560, Japan. Electronic address: masuda-y@aist.go.jp" |
DOI: | 10.1016/j.jhazmat.2023.131592 |
ISSN/ISBN: | 1873-3336 (Electronic) 0304-3894 (Linking) |
Abstract: | "Gas sensors with high sensitivity and high selectivity are required in practical applications to distinguish between target molecules in the detection of volatile organic compounds, real-time security alerts, and clinical diagnostics. Semiconducting tin oxide (SnO(2)) is highly regarded as a gas-sensing material due to its exceptional responsiveness to changes in gaseous environments and outstanding chemical stability. Herein, we successfully synthesized a large-lateral-area SnO(2) nanosheet with a loose structure as a gas sensing material by a one-step facile aqueous solution process without a surfactant or template. The SnO(2) sensor exhibited a remarkable sensitivity (R(a)/R(g) = 1.33) at 40 ppt for acetone, with a theoretical limit of detection of 1.37 ppt, which is the lowest among metal oxide semiconductor-based gas sensors. The anti-interference ability of acetone was higher than those of pristine SnO(2) and commercial sensors. These sensors also demonstrated perfect reproducibility and long-term stability of 100 days. The ultrasensitive response of the SnO(2) nanosheets toward acetone was attributed to the specific loose large lateral area structure, small grain size, and metastable (101) crystal facets. Considering these advantages, SnO(2) nanosheets with larger lateral area sensors have great potential for the detection and monitoring of acetone" |
Keywords: | Acetone gas High aspect ratio Low limit of detection SnO(2) gas sensor Ultrasensitive; |
Notes: | "PubMed-not-MEDLINELi, Chunyan Choi, Pil Gyu Masuda, Yoshitake eng Netherlands 2023/05/12 J Hazard Mater. 2023 Aug 5; 455:131592. doi: 10.1016/j.jhazmat.2023.131592. Epub 2023 May 6" |