Title: | Distinct protocerebral neuropils associated with attractive and aversive female-produced odorants in the male moth brain |
Author(s): | Kymre JH; Liu X; Ian E; Berge CN; Wang G; Berg BG; Zhao X; Chu X; |
Address: | "Chemosensory lab, Department of Psychology, Norwegian University of Science and Technology, Trondheim, Norway. Department of Entomology, College of Plant Protection, Henan Agricultural University, Zhengzhou, China. State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China" |
ISSN/ISBN: | 2050-084X (Electronic) 2050-084X (Linking) |
Abstract: | "The pheromone system of heliothine moths is an optimal model for studying principles underlying higher-order olfactory processing. In Helicoverpa armigera, three male-specific glomeruli receive input about three female-produced signals, the primary pheromone component, serving as an attractant, and two minor constituents, serving a dual function, that is, attraction versus inhibition of attraction. From the antennal-lobe glomeruli, the information is conveyed to higher olfactory centers, including the lateral protocerebrum, via three main paths - of which the medial tract is the most prominent. In this study, we traced physiologically identified medial-tract projection neurons from each of the three male-specific glomeruli with the aim of mapping their terminal branches in the lateral protocerebrum. Our data suggest that the neurons' widespread projections are organized according to behavioral significance, including a spatial separation of signals representing attraction versus inhibition - however, with a unique capacity of switching behavioral consequence based on the amount of the minor components" |
Keywords: | Animals Brain/anatomy & histology/physiology Male Moths/anatomy & histology/*physiology Neuropil/physiology Odorants Olfactory Pathways/anatomy & histology/*physiology Pheromones/chemistry/pharmacology Helicoverpa armigera electrophysiology interspecific; |
Notes: | "MedlineKymre, Jonas Hansen Liu, XiaoLan Ian, Elena Berge, Christoffer Nerland Wang, GuiRong Berg, Bente Gunnveig Zhao, XinCheng Chu, Xi eng Research Support, Non-U.S. Gov't England 2021/05/15 Elife. 2021 May 14; 10:e65683. doi: 10.7554/eLife.65683" |