Title: | "Morphogenetic effects of alkaloidal metabolites on the development of the coremata in the salt marsh moth, Estigmene acrea (Dru.) (Lepidoptera: Arctiidae)" |
Author(s): | Jordan AT; Jones TH; Conner WE; |
Address: | "Department of Biology, Wake Forest University, Winston-Salem, North Carolina 27106, USA. jordat1@wfu.edu" |
Journal Title: | Arch Insect Biochem Physiol |
ISSN/ISBN: | 0739-4462 (Print) 0739-4462 (Linking) |
Abstract: | "Pyrrolizidine alkaloids (PAs) play a fundamental role in the sexual biology of the salt marsh moth Estigmene acrea. They are precursors for the male courtship pheromone hydroxydanaidal and they stimulate the growth and development of male pheromone-disseminating organs called coremata. Yet larval Estigmene are polyphagous and feed only sporadically on PA-containing plants and those they utilize contain different classes of PAs. The various PAs ingested are hydrolyzed to the common necine metabolite retronecine and re-esterified to insect-specific alkaloids from which the male pheromone hydroxydanaidal is synthesized. Given this complex metabolic pathway, we investigated the role of retronecine and the insect-specific alkaloids that stem from it as morphogens stimulating corematal growth. Retronecine fed to terminal instar larvae in a standard caterpillar diet stimulated corematal growth. It also stimulated corematal growth when it was injected into the hemolymph of larvae. These results indicate that this common PA metabolite, and/or the insect specific alkaloids produced from it, function as corematal morphogens. The parental forms (alkaloids ingested from the plant) are not strictly necessary for corematal growth. Stimulation of the PA receptors on the galea and ingestion process are also not critical to corematal development. Since the insect-specific alkaloids are the direct precursors for the male courtship pheromone, it is argued that their level is the best indicator of the ultimate pheromone titer and would provide the most accurate developmental signal. The effects of alkaloidal metabolites as morphogens in E. acrea are compared to those for the South Asian arctiines Creatonotus gangis and C. transiens in which the developmental role of PAs was first discovered" |
Keywords: | Animals Chemoreceptor Cells/*physiology Eating/physiology Female Injections Male Morphogenesis/*physiology Moths/*growth & development/metabolism Pyrrolizidine Alkaloids/*metabolism *Sex Characteristics; |
Notes: | "MedlineJordan, Alex T Jones, Tappey H Conner, William E eng 2007/11/15 Arch Insect Biochem Physiol. 2007 Dec; 66(4):183-9. doi: 10.1002/arch.20211" |