Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractNondestructive multiplex detection of foodborne pathogens with background microflora and symbiosis using a paper chromogenic array and advanced neural network    Next AbstractElucidation of the Regular Emission Mechanism of Volatile beta-Ocimene with Anti-insect Function from Tea Plants (Camellia sinensis) Exposed to Herbivore Attack »

Huan Jing Ke Xue


Title:[Chemical Characteristics and Source Apportionment for VOCs During the Ozone Pollution Episodes and Non-ozone Pollution Periods in Qingdao]
Author(s):Jia ZH; Gu Y; Kong CL; Song JB; Meng H; Shi LY; Wu JH; Liu BS;
Address:"Laoshan Branch of Qingdao Ecology and Environment Bureau, Qingdao 266061, China. State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China. Jiaozhou Branch of Qingdao Ecology and Environment Bureau, Qingdao 266300, China. Qingdao Eco-environment Monitoring Center of Shandong Province, Qingdao 266003, China"
Journal Title:Huan Jing Ke Xue
Year:2023
Volume:44
Issue:4
Page Number:1962 - 1973
DOI: 10.13227/j.hjkx.202205040
ISSN/ISBN:0250-3301 (Print) 0250-3301 (Linking)
Abstract:"The ambient concentration of ozone is high in Qingdao, and ozone pollution episodes occur frequently in summer. The refined source apportionment of ambient volatile organic compounds (VOCs) and their ozone formation potential (OFP) during ozone pollution episodes and non-ozone pollution periods can play an important role in effectively reducing air ozone pollution in coastal cities and continuously improving ambient air quality. Therefore, this study applied the online VOCs monitoring data with hourly resolution in summer (from June to August) in 2020 in Qingdao to analyze the chemical characteristics of ambient VOCs during the ozone pollution episodes and non-ozone pollution periods and conducted the refined source apportionment of ambient VOCs and their OFP using a positive matrix factorization (PMF) model. The results showed that the average mass concentration of ambient VOCs in Qingdao in summer was 93.8 mug.m(-3), and compared with that during the non-ozone pollution period, the mass concentration of ambient VOCs during the ozone pollution episodes increased by 49.3%, and the mass concentration of aromatic hydrocarbons increased by 59.7%. The total OFP of ambient VOCs in summer was 246.3 mug.m(-3). Compared with that in the non-ozone pollution period, the total OFP of ambient VOCs in the ozone pollution episodes increased by 43.1%; that of alkanes increased the most, reaching 58.8%. M-ethyltoluene and 2,3-dimethylpentane were the species with the largest increase in OFP and its proportion during the ozone pollution episodes. The main contributors of ambient VOCs in Qingdao in summer were diesel vehicles (11.2%), solvent use (4.7%), liquefied petroleum gas and natural gas (LPG/NG) (27.5%), gasoline vehicles (8.9%), gasoline volatilization (26.6%), emissions of combustion- and petrochemical-related enterprises (16.4%), and plant emissions (4.8%). Compared with that in the non-ozone pollution period, the contribution concentration of LPG/NG in the ozone pollution episodes increased by 16.4 mug.m(-3), which was the source category with the largest increase. The contribution concentration of plant emissions increased by 88.6% in the ozone pollution episodes, which was the source category with the highest increase rate. In addition, emissions from combustion- and petrochemical-related enterprises were the largest contributor to the OFP of ambient VOCs in summer in Qingdao, with its OFP and contribution proportion being 38.0 mug.m(-3)and 24.5%, respectively, followed by that of LPG/NG and gasoline volatilization. Compared with the non-ozone pollution period, the total contributions of LPG/NG, gasoline volatilization, and solvent use to the increase in OFP for ambient VOCs in the ozone pollution episodes were 74.1%, which were the main contribution source categories"
Keywords:ozone pollution episodes positive matrix factorization(PMF) source apportionment summer volatile organic compounds(VOCs);
Notes:"PubMed-not-MEDLINEJia, Zhi-Hai Gu, Yao Kong, Cui-Li Song, Jiang-Bang Meng, He Shi, Lai-Yuan Wu, Jian-Hui Liu, Bao-Shuang chi English Abstract China 2023/04/12 Huan Jing Ke Xue. 2023 Apr 8; 44(4):1962-1973. doi: 10.13227/j.hjkx.202205040"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 22-11-2024