Title: | Genetically engineered transvestites reveal novel mating genes in budding yeast |
Address: | "Molecular and Cellular Biology and Faculty of Arts and Sciences Center for Systems Biology, Harvard University, Cambridge, Massachusetts 02138" |
DOI: | 10.1534/genetics.113.155846 |
ISSN/ISBN: | 1943-2631 (Electronic) 0016-6731 (Print) 0016-6731 (Linking) |
Abstract: | "Haploid budding yeast has two mating types, defined by the alleles of the MAT locus, MATa and MATalpha. Two haploid cells of opposite mating types mate by signaling to each other using reciprocal pheromones and receptors, polarizing and growing toward each other, and eventually fusing to form a single diploid cell. The pheromones and receptors are necessary and sufficient to define a mating type, but other mating-type-specific proteins make mating more efficient. We examined the role of these proteins by genetically engineering 'transvestite' cells that swap the pheromone, pheromone receptor, and pheromone processing factors of one mating type for another. These cells mate with each other, but their mating is inefficient. By characterizing their mating defects and examining their transcriptomes, we found Afb1 (a-factor barrier), a novel MATalpha-specific protein that interferes with a-factor, the pheromone secreted by MATa cells. Strong pheromone secretion is essential for efficient mating, and the weak mating of transvestites can be improved by boosting their pheromone production. Synthetic biology can characterize the factors that control efficiency in biological processes. In yeast, selection for increased mating efficiency is likely to have continually boosted pheromone levels and the ability to discriminate between partners who make more and less pheromone. This discrimination comes at a cost: weak mating in situations where all potential partners make less pheromone" |
Keywords: | "Genes, Mating Type, Fungal/*genetics Mating Factor Membrane Proteins/genetics/*metabolism Peptides/genetics/metabolism Saccharomyces cerevisiae/*genetics/metabolism Saccharomyces cerevisiae Proteins/genetics/*metabolism Transcriptome Afb1 genetic engineer;" |
Notes: | "MedlineHuberman, Lori B Murray, Andrew W eng P50 GM068763/GM/NIGMS NIH HHS/ P50GM068763/GM/NIGMS NIH HHS/ Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. 2013/10/15 Genetics. 2013 Dec; 195(4):1277-90. doi: 10.1534/genetics.113.155846. Epub 2013 Oct 11" |