Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractCharacterization of the Volatiles and Quality of Hybrid Grouper and Their Relationship to Changes of Microbial Community During Storage at 4 degrees C    Next Abstract[Comparison of odor and quality of Galli Gigerii Endothelium Corneum derived from domestic chickens and broilers] »

Environ Sci Pollut Res Int


Title:"Effect analysis of pore wall thickness, pore size, and functional group of activated carbon on adsorption behavior based on molecular simulation"
Author(s):Huang W; Chen W; Fu L; Zhang Y; Wu N; Zhu J; Xu X; Lyu A;
Address:"Jiangsu Provincial Key Laboratory of Oil and Gas Storage and Transportation Technology, Changzhou University, Changzhou, 213164, Jiangsu, China. hwq213@cczu.edu.cn. Engineering Technology Research Center for Oil Vapor Recovery, Changzhou University, Changzhou, 213164, Jiangsu, China. hwq213@cczu.edu.cn. Jiangsu Provincial Key Laboratory of Oil and Gas Storage and Transportation Technology, Changzhou University, Changzhou, 213164, Jiangsu, China. Engineering Technology Research Center for Oil Vapor Recovery, Changzhou University, Changzhou, 213164, Jiangsu, China. Jiangsu Provincial Key Laboratory of Oil and Gas Storage and Transportation Technology, Changzhou University, Changzhou, 213164, Jiangsu, China. fulipei@cczu.edu.cn. Engineering Technology Research Center for Oil Vapor Recovery, Changzhou University, Changzhou, 213164, Jiangsu, China. fulipei@cczu.edu.cn. School of Emergency Management and Safety Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, Beijing, China. School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, Jiangsu, China"
Journal Title:Environ Sci Pollut Res Int
Year:2021
Volume:20210620
Issue:42
Page Number:59908 - 59924
DOI: 10.1007/s11356-021-14355-x
ISSN/ISBN:1614-7499 (Electronic) 0944-1344 (Linking)
Abstract:"To effectively investigate the influence of activated carbon on the adsorption of volatile organic compounds (VOCs), physical and chemical factors of activated carbon including pore wall thickness, pore size, and functional groups were studied using grand canonical Monte Carlo (GCMC) simulation. In addition, benzene and acetone were taken as two representative components of VOCs. Simulation results was presented by the changes in characteristics of benzene and acetone. The results show that at the saturated vapor pressure (P(0)), the adsorption density hardly varies with the mentioned factors of activated carbon. Differently, the saturated adsorption capacity increases considerably with the rise of pore size or the reduction of pore wall thickness, and the rise of pore size also leads to a dramatic increase in adsorption layer and a subsequent fall in ordering. However, when the pressure is less than 0.001P(0), the monomolecular interaction energy and the isosteric heat are strengthened greatly with the addition of carboxyl and amino groups, while the threshold pressure shows an opposite change to the monomolecular interaction energy. In the meantime, the decrease of pore size or the increase of pore wall thickness will result in the same results. Findings in this paper can provide valuable insights into the microscopic mechanisms of the adsorption between activated carbon and VOCs"
Keywords:Adsorption Benzene *Charcoal Computer Simulation *Volatile Organic Compounds Activated carbon Functional group Grand canonical Monte Carlo (GCMC) Pore size Pore wall thickness Volatile organic compounds (VOCs);
Notes:"MedlineHuang, Weiqiu Chen, Weihua Fu, Lipei Zhang, Yilong Wu, Nanhua Zhu, Jiahui Xu, Xue Lyu, Aihua eng No. 51574044/the National Natural Science Foundation of China/ No. 51804045/the National Natural Science Foundation of China/ No. BE2018065/the Key Research and Development Program of Jiangsu Province (Industry Foresight and Common Key Technology)/ No. CJ20180053/the Sci & Tech Program of Changzhou/ No. CDYQCY202001/the Jiangsu Key Laboratory of Oil-gas Storage and Transportation Technology/ No. 2020-A-23/the Postgraduate Research & Practice Innovation Program of Jiangsu Province/ Germany 2021/06/21 Environ Sci Pollut Res Int. 2021 Nov; 28(42):59908-59924. doi: 10.1007/s11356-021-14355-x. Epub 2021 Jun 20"

 
Back to top
 
Citation: El-Sayed AM 2025. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2025 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 01-01-2025