Title: | Comparison and Identification of the Aroma-Active Compounds in the Root of Angelica dahurica |
Author(s): | Hu D; Guo J; Li T; Zhao M; Zou T; Song H; Alim A; |
Address: | "Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Technology and Business University (BTBU), Beijing 100048, China. Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University (BTBU), Beijing 100048, China. College of Food Science and Pharmacy, Xinjiang Agriculture University, Xinjiang 830052, China" |
DOI: | 10.3390/molecules24234352 |
ISSN/ISBN: | 1420-3049 (Electronic) 1420-3049 (Linking) |
Abstract: | "Solid-phase microextraction (SPME), purge and trap (P&T), stir bar sportive extraction (SBSE), and dynamic headspace sampling (DHS) were applied to extract, separate and analyze the volatile compounds in the roots of Hangbaizhi, Qibaizhi, and Bobaizhi and the GC-O-MS/MS (AEDA) was utilized for the quantification of key aroma compounds. Totals of 52, 54, and 43 aroma-active compounds extracted from the three samples by the four extraction methods were identified. Among these methods, the SPME effectively extracted the aroma compounds from the A. dahurica. Thus, using the SPME methods for quantitative analysis based on external standards and subsequent dilution analyses, totals of 20, 21, and 17 aroma compounds were detected in the three samples by the sniffing test, and sensory evaluations indicated that the aromas of A. dahurica included herb, spice, and woody. Finally, principal component analysis (PCA) showed that the three kinds A. dahurica formed three separate groups, and partial least squares discriminant analysis (PLS-DA) showed that caryophyllene, (-)-beta-elemene, nonanal, and beta-pinene played an important role in the classification of A. dahurica" |
Keywords: | Angelica/*chemistry Gas Chromatography-Mass Spectrometry Odorants/*analysis Plant Extracts/*chemistry/isolation & purification/pharmacology Plant Roots/*chemistry Solid Phase Microextraction Volatile Organic Compounds/*chemistry/isolation & purification/p; |
Notes: | "MedlineHu, Die Guo, Junrui Li, Ting Zhao, Mu Zou, Tingting Song, Huanlu Alim, Aygul eng PXM2019_014213_000010/Talent Training Quality Construction - First-Class Specialty Construction (municipal level) - Food Science and Engineering/ PXM2018_014213_000041/Talent Training Quality Construction - First-Class Specialty Construction (municipal level) - Food Science and Engineering/ Switzerland 2019/12/05 Molecules. 2019 Nov 28; 24(23):4352. doi: 10.3390/molecules24234352" |