Title: | Long-Lived Species Enhance Summertime Attribution of North American Ozone to Upwind Sources |
Author(s): | Guo Y; Liu J; Mauzerall DL; Li X; Horowitz LW; Tao W; Tao S; |
Address: | "NOAA Geophysical Fluid Dynamics Laboratory , Princeton, New Jersey 08540, United States" |
ISSN/ISBN: | 1520-5851 (Electronic) 0013-936X (Linking) |
Abstract: | "Ground-level ozone (O(3)), harmful to most living things, is produced from both domestic and foreign emissions of anthropogenic precursors. Previous estimates of the linkage from distant sources rely on the sensitivity approach (i.e., modeling the change of ozone concentrations that result from modifying precursor emissions) as well as the tagging approach (i.e., tracking ozone produced from specific O(3) precursors emitted from one region). Here, for the first time, we tag all O(3) precursors (i.e., nitrogen oxides (NO(x)), carbon monoxide (CO), and volatile organic compounds (VOCs)) from East Asia and explicitly track their physicochemical evolution without perturbing the nonlinear O(3) chemistry. We show that, even in summer, when intercontinental influence on ozone has typically been found to be weakest, nearly 3 parts per billion by volume (ppbv) seasonal average surface O(3) over North America can be attributed to East Asian anthropogenic emissions, compared with 0.7 ppbv using the sensitivity approach and 0.5 ppbv by tagging reactive nitrogen oxides. Considering the acute effects of O(3) exposure, approximately 670 cardiovascular and 300 respiratory premature mortalities within North America could be attributed to East Asia. CO and longer-lived VOCs, largely overlooked in previous studies, extend the influence of regional ozone precursors emissions and, thus, greatly enhance O(3) attribution to source region" |
Keywords: | *Air Pollutants Nitrogen Oxides Ozone/*chemistry Seasons United States Volatile Organic Compounds; |
Notes: | "MedlineGuo, Yixin Liu, Junfeng Mauzerall, Denise L Li, Xiaoyuan Horowitz, Larry W Tao, Wei Tao, Shu eng 2017/03/30 Environ Sci Technol. 2017 May 2; 51(9):5017-5025. doi: 10.1021/acs.est.6b05664. Epub 2017 Apr 13" |