Title: | A CD2-based model of yeast alpha-agglutinin elucidates solution properties and binding characteristics |
Author(s): | Grigorescu A; Chen MH; Zhao H; Kahn PC; Lipke PN; |
Address: | "Department of Biological Sciences and The Institute for Biomolecular Structure and Function, Hunter College of the City University of New York, NY 10021, USA" |
ISSN/ISBN: | 1521-6543 (Print) 1521-6543 (Linking) |
Abstract: | "We have previously shown that the Saccharomyces cerevisiae cell adhesion protein alpha-agglutinin has sequence characteristics of immunoglobulin-like proteins and have successfully modeled residues 200-325, based on the structure of immunoglobulin variable-type domains. Alignments matching residues 20-200 of alpha-agglutinin with domains I and II of members of the CD2/CD4 subfamily of the immunoglobulin superfamily showed > 80% conservation of key residues despite low sequence similarity overall. Three-dimensional models of two alpha-agglutinin domains constructed on the basis of these alignments were shown to conform to peptide mapping data and biophysical properties of alpha-agglutinin. In addition, the residue volume and surface accessibility characteristics of these models resembled those of the well-packed structures of related proteins. Residue-by-residue analysis showed that packing and accessibility anomalies were largely confined to glycosylated and protease-susceptible loop regions of the domains. Surface accessibility of hydrophobic residues was typical of proteins with extensive domain interactions, a finding compatible with the hydrodynamic properties of alpha -agglutinin and the hydrophobic nature of binding to its peptide ligand alpha-agglutinin. The procedures used to align the alpha-agglutinin sequence and test the quality of the model may be applicable to other proteins, especially those that resist crystallization because of extensive glycosylation" |
Keywords: | "Algorithms Amino Acid Sequence Amino Acids/chemistry CD2 Antigens/*chemistry/*metabolism CD4 Antigens/chemistry Cell Adhesion Disulfides Glycosylation Humans Immunoglobulins/chemistry Ligands Mating Factor Models, Biological Models, Molecular Molecular Se;" |
Notes: | "MedlineGrigorescu, A Chen, M H Zhao, H Kahn, P C Lipke, P N eng R01 GM47176/GM/NIGMS NIH HHS/ T34 GM 07823/GM/NIGMS NIH HHS/ Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S. England 2001/02/24 IUBMB Life. 2000 Aug; 50(2):105-13. doi: 10.1080/713803692" |