Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractMetabolite Profile and Immunomodulatory Properties of Bellflower Root Vinegar Produced Using Acetobacter pasteurianus A11-2    Next Abstract"Evidence for the effect of brief exposure to food, but not learning interference, on maze solving in desert ants" »

Plants (Basel)


Title:Antifungal Activity and Alleviation of Salt Stress by Volatile Organic Compounds of Native Pseudomonas Obtained from Mentha piperita
Author(s):Gil SS; Cappellari LDR; Giordano W; Banchio E;
Address:"INBIAS Instituto de Biotecnologia Ambiental y Salud (CONICET-Universidad Nacional de Rio Cuarto), Campus Universitario, Rio Cuarto 5800, Argentina"
Journal Title:Plants (Basel)
Year:2023
Volume:20230329
Issue:7
Page Number: -
DOI: 10.3390/plants12071488
ISSN/ISBN:2223-7747 (Print) 2223-7747 (Electronic) 2223-7747 (Linking)
Abstract:"As salt stress has a negative impact on plant growth and crop yield, it is very important to identify and develop any available biotechnology which can improve the salt tolerance of plants. Inoculation with plant-growth-promoting rhizobacteria (PGPR) is a proven environmentally friendly biotechnological resource for increasing the salt stress tolerance of plants and has a potential in-field application. In addition, bacterial volatile organic compounds (mVOCs) are signal molecules that may have beneficial roles in the soil-plant-microbiome ecosystem. We investigated the effects of mVOCs emitted by Pseudomona putida SJ46 and SJ04 on Mentha piperita grown under different levels of NaCl stress by evaluating their growth-promoting potential and capacity to increase salt tolerance effects. Furthermore, we evaluated under control and salt stress conditions the biocontrol ability of VOCs emitted by both these strains to inhibit the growth of Alternaria alternata and Sclerotium rolfsii. The VOCs emitted by both strains under control conditions did not lead to an significant improvement in peppermint growth. However, under salt stress conditions (75 or 100 mM NaCl), an amelioration of its physiological status was observed, with this effect being greater at 100 mM NaCl. This led to an enhancement of the number of leaves and nodes and, increased the shoot fresh and root dry weight by approximately twice in relation to control stressed plants. Moreover, the VOCs released by the two bacteria grown in control or saline media showed a significant reduction in the mycelial growth of A. alternata. In contrast, S. rolfsii growth was reduced 40% by the mVOCs released only under control conditions, with no effects being observed under salt stress. We also explored the composition of the bacterial volatile profiles by means of a solid-phase microextraction/gas chromatography-mass spectrometry (SPME/GC-MS) analysis. From the headspace of SJ46, three VOCs were identified: n-octanol, decane and tetradecane. The emission of SJ04 had the same chromatographic profile, with the addition of two more compounds: 1-(N-phenyl carbamyl)-2-morpholino cyclohexene and tridecane. Only compounds that were not present in the headspace of the control groups were recorded. The salt stress conditions where the bacteria were grown did not qualitatively modify the mVOC emissions. Taken together, our results suggest that plant-associated rhizobacterial VOCs play a potentially important role in modulating plant salt tolerance and reducing fungal growth. Thus, biological resources represent novel tools for counteracting the deleterious effects of salt stress and have the potential to be exploited in sustainable agriculture. Nevertheless, future studies are necessary to investigate technological improvements for bacterial VOC application under greenhouse and open field conditions"
Keywords:Mentha piperita Pseudomona putida biocontrol mVOCs microbial volatile organic compound phytopathogenic fungi plant-growth-promoting rhizobacteria (PGPR) salt stress;
Notes:"PubMed-not-MEDLINEGil, Samanta Soledad Cappellari, Lorena Del Rosario Giordano, Walter Banchio, Erika eng PPI 2020-2022: C529-1/National University of Rio Cuarto/ Switzerland 2023/04/14 Plants (Basel). 2023 Mar 29; 12(7):1488. doi: 10.3390/plants12071488"

 
Back to top
 
Citation: El-Sayed AM 2025. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2025 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 08-01-2025