Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractEffect of maternal odor on the cardiac rate of maternally separated infant rats    Next AbstractCanine Olfactory Thresholds to Amyl Acetate in a Biomedical Detection Scenario »

Reprod Domest Anim


Title:Endocrinologic control of normal canine ovarian function
Author(s):Concannon PW;
Address:"Department of Biological Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA. pwc1@cornell.edu"
Journal Title:Reprod Domest Anim
Year:2009
Volume:44 Suppl 2
Issue:
Page Number:3 - 15
DOI: 10.1111/j.1439-0531.2009.01414.x
ISSN/ISBN:1439-0531 (Electronic) 0936-6768 (Linking)
Abstract:"In dogs, the termination of the 3-10-month obligate anoestrus involves selection of a cohort of LH-sensitive follicles, presumably from a wave of dominant small antral follicles that would otherwise undergo atresia. The number and size of such follicles appears to increase, especially during the last 50 days of anoestrus when the already elevated concentrations of FSH become further elevated. The final selection and eventual terminal development of these follicles is caused by an increased frequency of high-amplitude LH pulses at the end of anoestrus. Concomitant increases in FSH are typically small or negligible. High concentrations of FSH in anoestrus are likely to be important in maintaining, if not stimulating, overlapping waves of dominant follicles throughout anoestrus, their expression of aromatase activity and basal oestradiol secretion sufficient to suppress LH by negative feedback. An attractive hypothesis is that late anoestrus increases in LH-stimulate synthesis of precursor androgen for already available FSH-dependent aromatase. After 7 or more days of elevated LH, and perhaps 2-5 days of semi-autonomous growth, with maximal oestradiol production reached, follicle capacity to further increase oestradiol becomes limited and excess progesterone becomes increasingly secreted. The pre-ovulatory LH surge and oestrus onset are then triggered - often synchronously and in concert with the terminal maturation of the follicles - by central effects of the large decrease in the oestrogen to progestin ratio. Follicular endocrine and paracrine events during and following the LH surge are likely similar to those reported for other species. The prolonged luteal phase lengths of 55-75 days in non-pregnant bitches bracket the 64 +/- 1 day in pregnancy and represent a genetically programmed luteal cell lifespan approximating gestation length as occurs in the luteal phase of hysterectomized animals of most polyoestrous artiodactyls and rodents. The 30-40-day slow regression after day 20 to 30 involves periodic cell death, diminution in cell size, low levels of apoptosis and minimal or modest involvement of endogenous prostaglandin F (PGF) production. The canine corpus luteum (CL) is dependent on both LH and prolactin as stimulating luteotrophins by day 15, and as required luteotrophins by days 20-25, if not earlier. Thereafter, both luteotrophins likely have cellular mechanisms of action similar to those reported for other species. Progesterone secretion during pregnancy is greatly enhanced by characteristic, and probably relaxin-stimulated, increases in prolactin concentration starting at or after day 25, and persisting to term. Near term, foetoplacental maturation results in the placental release of large, luteolytic amounts of PGF for 1-2 days pre-partum. Pre-partum luteolysis, like that induced by exogenous prostaglandin, likely involves a cascade enhanced by the removal of progesterone inhibition of PGF release and some degree of intra-luteal PGF synthesis. That a likely twofold or greater increase in progesterone production by the CL of pregnancy does not result in significantly higher serum progesterone than in non-pregnant metoestrus relates to several biological changes, including a large increase in plasma volume of distribution, increased metabolism of progesterone by increased uterine, placental and mammary masses and increased liver clearance and excretion of progesterone and progesterone metabolite. Anoestrus length and ovarian cycle intervals, variable within and among bitches, are likely affected by neuroendocrine components of an endogenous circannual cycle, albeit only photo-entrained in the Basenji breed. This may be modified by the prior luteal phase, exposure to oestrus female pheromones and as yet unknown mechanisms that likely operate via inhibitory opioidergic and/or stimulatory dopaminergic hypothalamic pathways affecting late anoestrus increases in LH"
Keywords:"Animals Dogs/*physiology Female Male Ovary/*physiology Pregnancy *Pregnancy, Animal;"
Notes:"MedlineConcannon, P W eng Review Germany 2009/09/17 Reprod Domest Anim. 2009 Jul; 44 Suppl 2:3-15. doi: 10.1111/j.1439-0531.2009.01414.x"

 
Back to top
 
Citation: El-Sayed AM 2025. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2025 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 10-01-2025