Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractVolatile fatty acid platform - a cornerstone for the circular bioeconomy    Next AbstractOpen tube combustion method of organic samples for stable carbon isotope analysis »

Ecol Evol


Title:Variation in plant leaf traits affects transmission and detectability of herbivore vibrational cues
Author(s):Velilla E; Polajnar J; Virant-Doberlet M; Commandeur D; Simon R; Cornelissen JHC; Ellers J; Halfwerk W;
Address:Department of Ecological Science Vrije Universiteit Amsterdam Amsterdam The Netherlands. National Institute of Biology Ljubljana Slovenia
Journal Title:Ecol Evol
Year:2020
Volume:20200930
Issue:21
Page Number:12277 - 12289
DOI: 10.1002/ece3.6857
ISSN/ISBN:2045-7758 (Print) 2045-7758 (Electronic) 2045-7758 (Linking)
Abstract:"Many insects use plant-borne vibrations to obtain important information about their environment, such as where to find a mate or a prey, or when to avoid a predator. Plant species can differ in the way they vibrate, possibly affecting the reliability of information, and ultimately the decisions that are made by animals based on this information. We examined whether the production, transmission, and possible perception of plant-borne vibrational cues is affected by variation in leaf traits. We recorded vibrations of 69 Spodoptera exigua caterpillars foraging on four plant species that differed widely in their leaf traits (cabbage, beetroot, sunflower, and corn). We carried out a transmission and an airborne noise absorption experiment to assess whether leaf traits influence amplitude and frequency characteristics, and background noise levels of vibrational chewing cues. Our results reveal that species-specific leaf traits can influence transmission and potentially perception of herbivore-induced chewing vibrations. Experimentally-induced vibrations attenuated stronger on plants with thicker leaves. Amplitude and frequency characteristics of chewing vibrations measured near a chewing caterpillar were, however, not affected by leaf traits. Furthermore, we found a significant effect of leaf area, water content and leaf thickness-important plant traits against herbivory, on the vibrations induced by airborne noise. On larger leaves higher amplitude vibrations were induced, whereas on thicker leaves containing more water airborne noise induced higher peak frequencies. Our findings indicate that variation in leaf traits can be important for the transmission and possibly detection of vibrational cues"
Keywords:Animals;biotremology leaf traits plant-borne vibrations plant-herbivore interactions transmission;
Notes:"PubMed-not-MEDLINEVelilla, Estefania Polajnar, Jernej Virant-Doberlet, Meta Commandeur, Daniel Simon, Ralph Cornelissen, Johannes H C Ellers, Jacintha Halfwerk, Wouter eng England 2020/11/20 Ecol Evol. 2020 Sep 30; 10(21):12277-12289. doi: 10.1002/ece3.6857. eCollection 2020 Nov"

 
Back to top
 
Citation: El-Sayed AM 2025. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2025 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 10-01-2025