Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous Abstract"Sex pheromone components of the pear fruit moth, Acrobasis pyrivorella (Matsumura)"    Next Abstract"Sex Pheromone of the Cotton Mealybug, Phenacoccus solenopsis, with an Unusual Cyclobutane Structure" »

PLoS One


Title:Olfactory cues from plants infected by powdery mildew guide foraging by a mycophagous ladybird beetle
Author(s):Tabata J; De Moraes CM; Mescher MC;
Address:"Department of Entomology, Pennsylvania State University, University Park, Pennsylvania, United States of America"
Journal Title:PLoS One
Year:2011
Volume:20110818
Issue:8
Page Number:e23799 -
DOI: 10.1371/journal.pone.0023799
ISSN/ISBN:1932-6203 (Electronic) 1932-6203 (Linking)
Abstract:"Powdery mildews (Erysiphales) are economically important plant pathogens that attack many agricultural crops. Conventional management strategies involving fungicide application face challenges, including the evolution of resistance and concerns over impacts on non-target organisms, that call for investigation of more sustainable alternatives. Mycophagous ladybird beetles (Coleoptera: Coccinellidae) feed on powdery mildew and have considerable potential as biological control agents; however, the foraging ecology and behavior of these beetles is not well understood. Here we document the olfactory cues presented by squash plants (Cucurbita moschata) infected by powdery mildew (Podosphaera sp.) and the behavioral responses of twenty-spotted ladybird beetles (Psyllobora vigintimaculata) to these cues. Volatile analyses through gas chromatography revealed a number of volatile compounds characteristic of infected plants, including 3-octanol and its analogues 1-octen-3-ol and 3-octanone. These compounds are typical 'moldy' odorants previously reported in volatiles collected from other fungi. In addition, infected plants exhibited elevated emissions of several compounds also observed in collections from healthy leaves, including linalool and benzyl alcohol, which are reported to have anti-fungal properties. In Y-tube choice assays, P. vigintimaculata beetles displayed a significant preference for the odors of infected plants compared to those of healthy plants. Moreover, beetles exhibited strong attraction to one individual compound, 1-octen-3-ol, which was the most abundant of the characteristic fungal compounds identified. These results enhance our understanding of the olfactory cues that guide foraging by mycophagous insects and may facilitate the development of integrated disease-management strategies informed by an understanding of underlying ecological mechanisms"
Keywords:Animals Ascomycota/*physiology Biological Assay Coleoptera/*physiology Cucurbita/*microbiology *Cues Feeding Behavior/*physiology Olfactory Pathways/*physiology Plant Diseases/*microbiology Volatile Organic Compounds/analysis;
Notes:"MedlineTabata, Jun De Moraes, Consuelo M Mescher, Mark C eng Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. 2011/08/31 PLoS One. 2011; 6(8):e23799. doi: 10.1371/journal.pone.0023799. Epub 2011 Aug 18"

 
Back to top
 
Citation: El-Sayed AM 2025. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2025 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 10-01-2025