Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractThe prospect of applying chemical elicitors and plant strengtheners to enhance the biological control of crop pests    Next AbstractOral Secretions Affect HIPVs Induced by Generalist (Mythimna loreyi) and Specialist (Parnara guttata) Herbivores in Rice »

Pest Manag Sci


Title:Plant strengtheners enhance parasitoid attraction to herbivore-damaged cotton via qualitative and quantitative changes in induced volatiles
Author(s):Sobhy IS; Erb M; Turlings TC;
Address:"Laboratory of Fundamental and Applied Research in Chemical Ecology, Institute of Biology, University of Neuchatel, Neuchatel, Switzerland; Plant-Insect Interactions Group, Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan; Department of Plant Protection, Public Service Centre of Biological Control (PSCBC), Faculty of Agriculture, Suez Canal University, Ismailia, Egypt"
Journal Title:Pest Manag Sci
Year:2015
Volume:20140603
Issue:5
Page Number:686 - 693
DOI: 10.1002/ps.3821
ISSN/ISBN:1526-4998 (Electronic) 1526-498X (Linking)
Abstract:"BACKGROUND: Herbivore-damaged plants release a blend of volatile organic compounds (VOCs) that differs from undamaged plants. These induced changes are known to attract the natural enemies of the herbivores and therefore are expected to be important determinants of the effectiveness of biological control in agriculture. One way of boosting this phenomenon is the application of plant strengtheners, which has been shown to enhance parasitoid attraction in maize. It is unclear whether this is also the case for other important crops. RESULTS: The plant strengtheners BTH [benzo (1,2,3) thiadiazole-7-carbothioic acid S-methyl ester] and laminarin were applied to cotton plants, and the effects on volatile releases and the attraction of three hymenopteran parasitoids, Cotesia marginiventris, Campoletis sonorensis and Microplitis rufiventris, were studied. After treated and untreated plants were induced by real or simulated caterpillar feeding, it was found that BTH treatment increased the attraction of the parasitoids, whereas laminarin had no significant effect. BTH treatment selectively increased the release of two homoterpenes and reduced the emission of indole, the latter of which had been shown to interfere with parasitoid attraction in earlier studies. Canonical variate analyses of the data show that the parasitoid responses were dependent on the quality rather than the quantity of volatile emission in this tritrophic interaction. CONCLUSION: Overall, these results strengthen the emerging paradigm that induction of plant defences with chemical elicitors such as BTH could provide a sustainable and environmentally friendly strategy for biological control of pests by enhancing the attractiveness of cultivated plants to natural enemies of insect herbivores"
Keywords:Animals Glucans/*pharmacology Gossypium/drug effects/*metabolism/parasitology Herbivory Larva/physiology Moths/*physiology Odorants Thiadiazoles/*pharmacology Volatile Organic Compounds/*metabolism Wasps/*physiology cotton homoterpenes indole parasitoid a;
Notes:"MedlineSobhy, Islam S Erb, Matthias Turlings, Ted C J eng England 2014/05/07 Pest Manag Sci. 2015 May; 71(5):686-93. doi: 10.1002/ps.3821. Epub 2014 Jun 3"

 
Back to top
 
Citation: El-Sayed AM 2025. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2025 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 10-01-2025