Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractUbiquitous water-soluble molecules in aquatic plant exudates determine specific insect attraction    Next AbstractVolatile Compounds Are Involved in Cellular Crosstalk and Upregulation »

iScience


Title:Profiling Single Cancer Cells with Volatolomics Approach
Author(s):Serasanambati M; Broza YY; Marmur A; Haick H;
Address:"Department of Chemical Engineering, Technion - Israel Institute of Technology, Technion City, Haifa 3200003, Israel. Department of Chemical Engineering, Technion - Israel Institute of Technology, Technion City, Haifa 3200003, Israel; Russell Berries Nanotechnology Institute, Technion - Israel Institute of Technology, Technion City, Haifa 3200003, Israel; Technion Integrated Cancer Center, The Ruth and Bruce Rappaport Faculty of Medicine, 1 Efron St. Bat Galim, Haifa 3525433, Israel. Electronic address: hhossam@technion.ac.il"
Journal Title:iScience
Year:2019
Volume:20181214
Issue:
Page Number:178 - 188
DOI: 10.1016/j.isci.2018.12.008
ISSN/ISBN:2589-0042 (Electronic) 2589-0042 (Linking)
Abstract:"Single-cell analysis is a rapidly evolving to characterize molecular information at the individual cell level. Here, we present a new approach with the potential to overcome several key challenges facing the currently available techniques. The approach is based on the identification of volatile organic compounds (VOCs), viz. organic compounds having relatively high vapor pressure, emitted to the cell's headspace. This concept is demonstrated using lung cancer cells with various p53 genetic status and normal lung cells. The VOCs were analyzed by gas chromatography combined with mass spectrometry. Among hundreds of detected compounds, 18 VOCs showed significant changes in their concentration levels in tumor cells versus control. The composition of these VOCs was found to depend, also, on the sub-molecular structure of the p53 genetic status. Analyzing the VOCs offers a complementary way of querying the molecular mechanisms of cancer as well as of developing new generation(s) of biomedical approaches for personalized screening and diagnosis"
Keywords:Analytical Chemistry Biological Sciences Cancer Systems Biology Sensor;
Notes:"PubMed-not-MEDLINESerasanambati, Mamatha Broza, Yoav Y Marmur, Abraham Haick, Hossam eng 2019/01/07 iScience. 2019 Jan 25; 11:178-188. doi: 10.1016/j.isci.2018.12.008. Epub 2018 Dec 14"

 
Back to top
 
Citation: El-Sayed AM 2025. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2025 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 10-01-2025