Title: | The Saccharomyces cerevisiae recombination enhancer biases recombination during interchromosomal mating-type switching but not in interchromosomal homologous recombination |
Author(s): | Houston P; Simon PJ; Broach JR; |
Address: | "Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA" |
DOI: | 10.1534/genetics.166.3.1187 |
ISSN/ISBN: | 0016-6731 (Print) 0016-6731 (Linking) |
Abstract: | "Haploid Saccharomyces can change mating type through HO-endonuclease cleavage of an expressor locus, MAT, followed by gene conversion using one of two repository loci, HML or HMR, as donor. The mating type of a cell dictates which repository locus is used as donor, with a cells using HML and alpha cells using HMR. This preference is established in part by RE, a locus on the left arm of chromosome III that activates the surrounding region, including HML, for recombination in a cells, an activity suppressed by alpha 2 protein in alpha cells. We have examined the ability of RE to stimulate different forms of interchromosomal recombination. We found that RE exerted an effect on interchromosomal mating-type switching and on intrachromosomal homologous recombination but not on interchromosomal homologous recombination. Also, even in the absence of RE, MAT alpha still influenced donor preference in interchromosomal mating-type switching, supporting a role of alpha 2 in donor preference independent of RE. These results suggest a model in which RE affects competition between productive and nonproductive recombination outcomes. In interchromosome gene conversion, RE enhances both productive and nonproductive pathways, whereas in intrachromosomal gene conversion and mating-type switching, RE enhances only the productive pathway" |
Keywords: | "*Chromosomes, Fungal/*physiology *Enhancer Elements, Genetic Gene Conversion Gene Expression Regulation, Fungal Genes, Switch Haploidy Mating Factor Models, Genetic Peptides *Recombination, Genetic Saccharomyces cerevisiae/*genetics;" |
Notes: | "MedlineHouston, Peter Simon, Peter J Broach, James R eng GM48540/GM/NIGMS NIH HHS/ Research Support, U.S. Gov't, P.H.S. 2004/04/15 Genetics. 2004 Mar; 166(3):1187-97. doi: 10.1534/genetics.166.3.1187" |