Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous Abstract"Removal of intertidal grazers by human harvesting leads to alteration of species interactions, community structure and resilience to climate change"    Next AbstractReal-world emission characteristics and inventory of volatile organic compounds originating from construction and agricultural machinery »

Invest Ophthalmol Vis Sci


Title:"Retinal spectral sensitivity, fur coloration, and urine reflectance in the genus octodon (rodentia): implications for visual ecology"
Author(s):Chavez AE; Bozinovic F; Peichl L; Palacios AG;
Address:"Department of Physiology, Faculty of Science and Center of Molecular and Cellular Neuroscience of Valparaiso, University of Valparaiso, Valparaiso, Chile"
Journal Title:Invest Ophthalmol Vis Sci
Year:2003
Volume:44
Issue:5
Page Number:2290 - 2296
DOI: 10.1167/iovs.02-0670
ISSN/ISBN:0146-0404 (Print) 0146-0404 (Linking)
Abstract:"PURPOSE: To determine the eye's spectral sensitivity in three species of the genus Octodon (order Rodentia; infraorder Caviomorpha), O. degus, O. bridgesi, and O. lunatus, as well as the spectral properties of the animals' fur and urine and of objects in their habitat. The genus is endemic in Chile and contains species with different habitats and circadian patterns (diurnal versus nocturnal). METHODS: The electroretinogram (ERG) was used to record scotopic and photopic spectral sensitivity. The reflectance of ventral and dorsal body parts, urine, and other objects from the natural microhabitat were measured with a fiber-optic spectrometer. RESULTS: In scotopic conditions, the maxima of sensitivity (lambda(max)) were at 505.7 +/- 7.7 nm in O. degus, 501 +/- 7.4 nm in O. bridgesi, and 510.1 +/- 7.4 nm in O. lunatus, representing the rod mechanism. In photopic conditions, only the diurnal species O. degus (common degu) was studied. The degu's photopic sensitivity had a lambda(max) at 500.6 +/- 1.2 nm and contained two cone mechanisms with lambda(max) at 500 nm (green, medium-wavelength-sensitive [M] cones) and approximately 360 nm (ultraviolet, short-wavelength-sensitive [S] cones). In all three Octodon species, dorsal body parts were more cryptically colored than ventral ones, and ventral body parts had a significant UV reflectance. The fresh urine of O. degus, used for scent marking in various behavioral patterns, was also high in UV reflectance. CONCLUSIONS: It is suggested that territorial urine marks are visual as well as pheromone cues for UV-sensitive species and hence may have favored the evolution of UV-cones in rodents"
Keywords:"Animal Communication Animals Animals, Wild Color Perception/physiology Dark Adaptation Ecology Electroretinography Hair Color/*physiology Light Retina/*physiology Rodentia/*physiology Sensory Thresholds Ultraviolet Rays *Urinalysis Vision, Ocular/*physiol;Neuroscience;"
Notes:"MedlineChavez, Andres E Bozinovic, Francisco Peichl, Leo Palacios, Adrian G eng Research Support, Non-U.S. Gov't 2003/04/26 Invest Ophthalmol Vis Sci. 2003 May; 44(5):2290-6. doi: 10.1167/iovs.02-0670"

 
Back to top
 
Citation: El-Sayed AM 2025. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2025 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 09-01-2025