Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous Abstract"Contrary to Marine Environments, Common Microplastics in Freshwater Systems May Not Emit Dimethyl Sulfide: An Important Infochemical"    Next Abstract"Differentiation of raw spirits of rye, corn and potato using chromatographic profiles of volatile compounds" »

J Insect Physiol


Title:"Genetic variation in NIN1 and C/VIF1 genes is significantly associated with Populus angustifolia resistance to a galling herbivore, Pemphigus betae"
Author(s):Zinkgraf MS; Meneses N; Whitham TG; Allan GJ;
Address:"Department of Biological Sciences, Environmental Genetics and Genomics Laboratory (EnGGen), Northern Arizona University, Flagstaff, AZ 86011, USA. Electronic address: mzinkgraf@gmail.com. Department of Biological Sciences, Environmental Genetics and Genomics Laboratory (EnGGen), Northern Arizona University, Flagstaff, AZ 86011, USA. Department of Biological Sciences, Environmental Genetics and Genomics Laboratory (EnGGen), Northern Arizona University, Flagstaff, AZ 86011, USA; Merriam-Powell Center for Environmental Research, Northern Arizona University, Flagstaff, AZ 86011, USA"
Journal Title:J Insect Physiol
Year:2016
Volume:20151027
Issue:
Page Number:50 - 59
DOI: 10.1016/j.jinsphys.2015.10.007
ISSN/ISBN:1879-1611 (Electronic) 0022-1910 (Linking)
Abstract:"The identification of genes associated with ecologically important traits provides information on the potential genetic mechanisms underlying the responses of an organism to its natural environment. In this study, we investigated the genetic basis of host plant resistance to the gall-inducing aphid, Pemphigus betae, in a natural population of 154 narrowleaf cottonwoods (Populus angustifolia). We surveyed genetic variation in two genes putatively involved in sink-source relations and a phenology gene that co-located in a previously identified quantitative trait locus for resistance to galling. Using a candidate gene approach, three major findings emerged. First, natural variation in tree resistance to galling was repeatable. Sampling of the same tree genotypes 20 years after the initial survey in 1986 show that 80% of the variation in resistance was due to genetic differences among individuals. Second, we identified significant associations at the single nucleotide polymorphism and haplotype levels between the plant neutral invertase gene NIN1 and tree resistance. Invertases are a class of sucrose hydrolyzing enzymes and play an important role in plant responses to biotic stress, including the establishment of nutrient sinks. These associations with NIN1 were driven by a single nucleotide polymorphism (NIN1_664) located in the second intron of the gene and in an orthologous sequence to two known regulatory elements. Third, haplotypes from an inhibitor of invertase (C/VIF1) were significantly associated with tree resistance. The identification of genetic variation in these two genes provides a starting point to understand the possible genetic mechanisms that contribute to tree resistance to gall formation. We also build on previous work demonstrating that genetic differences in sink-source relationships of the host influence the ability of P. betae to manipulate the flow of nutrients and induce a nutrient sink"
Keywords:"Animals Aphids/physiology Enzyme Inhibitors Genes, Plant Genetic Variation Haplotypes *Herbivory Plant Immunity/*genetics Plant Proteins/genetics Plant Tumors/genetics/parasitology Polymorphism, Single Nucleotide Populus/*genetics beta-Fructofuranosidase/;"
Notes:"MedlineZinkgraf, Matthew S Meneses, Nashelly Whitham, Thomas G Allan, Gerard J eng R25-GM56931/GM/NIGMS NIH HHS/ Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. England 2015/11/01 J Insect Physiol. 2016 Jan; 84:50-59. doi: 10.1016/j.jinsphys.2015.10.007. Epub 2015 Oct 27"

 
Back to top
 
Citation: El-Sayed AM 2025. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2025 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 09-01-2025