Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractMeasurement of emissions from air pollution sources. 3. C1-C29 organic compounds from fireplace combustion of wood    Next AbstractMeasurement of emissions from air pollution sources. 5. C1-C32 organic compounds from gasoline-powered motor vehicles »

Environ Sci Technol


Title:Measurement of emissions from air pollution sources. 4. C1-C27 organic compounds from cooking with seed oils
Author(s):Schauer JJ; Kleeman MJ; Cass GR; Simoneit BR;
Address:"Environmental Chemistry and Technology Program, University of Wisconsin-Madison, 53706, USA. jschauer@engr.wisc.edu"
Journal Title:Environ Sci Technol
Year:2002
Volume:36
Issue:4
Page Number:567 - 575
DOI: 10.1021/es002053m
ISSN/ISBN:0013-936X (Print) 0013-936X (Linking)
Abstract:"The emission rates of gas-phase, semivolatile, and particle-phase organic compounds ranging in carbon number from C1 to C27 were measured from institutional-scale food cooking operations that employ seed oils. Two cooking methods and three types of seed oils were examined: vegetables stir-fried in soybean oil, vegetables stir-fried in canola oil, and potatoes deep fried in hydrogenated soybean oil. The emission rates of 99 organic compounds were quantified, and these include n-alkanes, branched alkanes, alkenes, n-alkanoic acids, n-alkenoic acids, carbonyls, aromatics, polycyclic aromatic hydrocarbons (PAH), and lactones. Carbonyls and fatty acids (n-alkanoic and n-alkenoic acids) make up a significant portion of the organic compounds emitted from all three seed oil cooking procedures. The compositional differences in the organic compound emissions between the different cooking operations are consistent with the differences in the organic composition of the various cooking oils used. The distribution of the n-alkanoic acids between the gas and particle phases was found to be in good agreement with gas/particle partitioning theory. The relative importance of emissions from commercial deep frying operations to the total emissions of C16 and C18 n-alkanoic acids in the Los Angeles urban area was estimated using the available information and is estimated to account for approximately 7% of the total primary emissions of these acids. Additional emissions of these n-alkanoic acids from stir-frying and grill frying operations are expected. Estimates also indicate that seed oil cooking may make up a significant fraction of the emissions of lighter n-alkanoic acids such as nonanoic acid"
Keywords:Air Pollutants/*analysis Cooking Environmental Monitoring Hydrocarbons/*analysis Plant Oils/*chemistry Volatilization;
Notes:"MedlineSchauer, James J Kleeman, Michael J Cass, Glen R Simoneit, Bernd R T eng Research Support, Non-U.S. Gov't 2002/03/09 Environ Sci Technol. 2002 Feb 15; 36(4):567-75. doi: 10.1021/es002053m"

 
Back to top
 
Citation: El-Sayed AM 2025. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2025 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 10-01-2025