Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractHow to resolve cryptic species of polypores: an example in Fomes    Next AbstractBiofilm growth and hydrodynamic behaviour in the biological plate tower (BPT) with and without hanging biomass (BPT-HB) »

Environ Sci Technol


Title:Microfungal alkylation and volatilization of selenium adsorbed by goethite
Author(s):Peitzsch M; Kremer D; Kersten M;
Address:"Geosciences Institute, Johannes Gutenberg-University, Mainz 55099, Germany"
Journal Title:Environ Sci Technol
Year:2010
Volume:44
Issue:1
Page Number:129 - 135
DOI: 10.1021/es9006492
ISSN/ISBN:0013-936X (Print) 0013-936X (Linking)
Abstract:"Selenium adsorbed in the oxyanionic form by Fe-oxides like goethite is considered of benefit for long-term stabilization of (79)Se under near field conditions of radionuclide waste disposal sites. However, microbe-mediated volatilization of the uranium fission product (79)Se has not yet been considered for risk assessment based on the use of the water-solid distribution coefficient K(D). We have performed incubation experiments in a ternary system selenium-microbe-goethite and show that mycobiota including the common black microfungi genera Alternaria alternata are capable of volatilizing the Se even if immobilized by goethite. The microfungi were incubated in a standardized nutrient broth suspension with 10 g L(-1) of the oxide target under defined conditions. Volatile organic selenium (VOSe) species formed in the head space of the culture flasks were sampled and measured directly by a cryotrapping cryofocusing gas chromatographic system coupled with ICP-MS detection (CT-CF-GC-ICP-MS). Alkylated VOSe species were found at the tens to hundreds ng m(-3) levels dominated by dimethyl selenide (DMSe) and dimethyl diselenide (DMDSe). The total amount of DMSe released into the 80-mL headspace volume within the 21 days of incubation was up to 1.12 +/- 0.17 nmol and 0.48 +/- 0.12 nmol for systems without and with goethite amendment, respectively. Alkylation rates of up to 0.1 mumol Se per day and g biomass cannot be neglected as a potential fission product mobilization pathway, unless the inherent radioactivity is proven to prevent any such microbial activity on the long-term. Otherwise it may lead to an onsite accumulation of (79)Se through evapoconcentration in the enclosed underground caverns"
Keywords:Adsorption Alkylation Alternaria/*metabolism Biomass Gas Chromatography-Mass Spectrometry Iron Compounds/*metabolism Minerals Selenium/*metabolism Volatilization;
Notes:"MedlinePeitzsch, Mirko Kremer, Daniel Kersten, Michael eng Research Support, Non-U.S. Gov't 2009/12/31 Environ Sci Technol. 2010 Jan 1; 44(1):129-35. doi: 10.1021/es9006492"

 
Back to top
 
Citation: El-Sayed AM 2025. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2025 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 10-01-2025