Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractMolecular constraints on resistance-tolerance trade-offs    Next Abstract"Joint action of quercetin with four insecticides on the cotton leaf-worm larvae, Spodoptera littoralis Boisd. (Lep. : Noctuidae) in Egypt" »

Oecologia


Title:Individual and interactive effects of herbivory on plant fitness: endopolyploidy as a driver of genetic variation in tolerance and resistance
Author(s):Mesa JM; Juvik JA; Paige KN;
Address:"School of Integrative Biology, University of Illinois at Urbana-Champaign, 505 South Goodwin Avenue, Urbana, IL, 61801, USA. Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1201 West Gregory Drive, Urbana, IL, 61801, USA. School of Integrative Biology, University of Illinois at Urbana-Champaign, 505 South Goodwin Avenue, Urbana, IL, 61801, USA. k-paige@illinois.edu"
Journal Title:Oecologia
Year:2019
Volume:20190704
Issue:4
Page Number:847 - 856
DOI: 10.1007/s00442-019-04458-1
ISSN/ISBN:1432-1939 (Electronic) 0029-8549 (Linking)
Abstract:"Previous studies have shown a causal link between mammalian herbivory, tolerance, and chemical defense in Arabidopsis thaliana, driven by the process of endoreduplication (replication of the genome without mitosis). Removal of the apical meristem by mammalian herbivores lowers auxin, which triggers entry into the endocycle. Increasing chromosome number through endoreduplication, and therefore gene copy number, provides a means of increasing gene expression promoting rapid regrowth rates, higher defensive chemistry and enhanced fitness. Here, we assess whether insect leaf-feeding elicits the same compensatory response as the removal of apical dominance. Insect feeding has been shown to downregulate auxin production, which should trigger endoreduplication. Results here support this contention; insect leaf-feeding by Trichoplusia ni elicited a compensatory response similar to that of mammalian herbivores-an ecotype-specific response consistent with the level of endoreduplication. The interactive effects of mammalian and insect herbivory were also assessed to determine whether interactions were additive (pairwise) or non-additive (diffuse) on tolerance (fitness). Specifically, results indicate that herbivory is either diffuse (a significant clipping x T. ni interaction) or pairwise (no significant interaction between clipping and T. ni herbivory), dependent upon plant genotype and compensatory ability. In general, herbivore-induced changes in plant quality appear to be responsible for the observed differences in herbivory and fitness compensation. We discuss the importance of evaluating endoreduplication among plants within a population to avoid masking the association between tolerance and resistance and the fitness consequences of multi-herbivore interactions"
Keywords:Animals *Arabidopsis Genetic Variation Genotype *Herbivory Insecta Arabidopsis Endoreduplication Fitness compensation Glucosinolates Overcompensation Oxidative pentose phosphate pathway Resistance Tolerance;
Notes:"MedlineMesa, J Miles Juvik, John A Paige, Ken N eng DEB-1146085/National Science Foundation/ Germany 2019/07/06 Oecologia. 2019 Aug; 190(4):847-856. doi: 10.1007/s00442-019-04458-1. Epub 2019 Jul 4"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 31-10-2024