Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractDrought impairs herbivore-induced volatile terpene emissions by ponderosa pine but not through constraints on newly assimilated carbon    Next AbstractMolecular and Biochemical Mechanisms of Elicitors in Pest Resistance »

J Exp Bot


Title:Mythimna separata herbivory primes maize resistance in systemic leaves
Author(s):Malook SU; Xu Y; Qi J; Li J; Wang L; Wu J;
Address:"Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China. CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China"
Journal Title:J Exp Bot
Year:2021
Volume:72
Issue:10
Page Number:3792 - 3805
DOI: 10.1093/jxb/erab083
ISSN/ISBN:1460-2431 (Electronic) 0022-0957 (Print) 0022-0957 (Linking)
Abstract:"Biotic and abiotic cues can trigger priming in plants, which enables plants to respond to subsequent challenge with stronger and/or faster responses. It is well known that herbivory activates defense-related responses in systemic leaves. However, little is known about whether insect feeding activates priming in systemic leaves. To determine whether and how herbivory induces priming in maize systemic leaves, a combination of insect bioassays, phytohormone and defense metabolite quantification, and genetic and transcriptome analyses were performed. Actual and simulated Mythimna separata herbivory in maize local leaves primed the systemic leaves for enhanced accumulation of jasmonic acid and benzoxazinoids and increased resistance to M. separata. Activation of priming in maize systemic leaves depends on both the duration of simulated herbivory and perception of M. separata oral secretions in the local leaves, and genetic analysis indicated that jasmonic acid and benzoxazinoids mediate the primed defenses in systemic leaves. Consistently, in response to simulated herbivory, the primed systemic leaves exhibited a large number of genes that were uniquely regulated or showed further up- or down-regulation compared with the non-primed systemic leaves. This study provides new insight into the regulation and ecological function of priming in maize"
Keywords:Animals Cyclopentanes *Herbivory *Moths Oxylipins Plant Growth Regulators Plant Leaves Zea mays/genetics Mythimna separata Benzoxazinoids insect resistance jasmonic acid maize priming transcriptome;
Notes:"MedlineMalook, Saif Ul Xu, Yuxing Qi, Jinfeng Li, Jing Wang, Lei Wu, Jianqiang eng Research Support, Non-U.S. Gov't England 2021/03/02 J Exp Bot. 2021 May 4; 72(10):3792-3805. doi: 10.1093/jxb/erab083"

 
Back to top
 
Citation: El-Sayed AM 2025. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2025 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 09-01-2025