Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous Abstract"Molecular identification and functional analysis of Niemann-Pick type C2 proteins??ecarriers for semiochemicals and other hydrophobic compounds in the brown dog tick, Rhipicephalus linnaei"    Next AbstractBacterial profiles and volatile flavor compounds in commercial Suancai with varying salt concentration from Northeastern China »

Sci Total Environ


Title:Evaluation of heavy metal mobilization in creek sediment: Influence of RAC values and ambient environmental factors
Author(s):Liang G; Zhang B; Lin M; Wu S; Hou H; Zhang J; Qian G; Huang X; Zhou J;
Address:"School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China. Center of Solid Waste Management, Shanghai 200235, China. School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China. School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China. Electronic address: huangxin2008@shu.edu.cn. School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China. Electronic address: jizhi.zhou@shu.edu.cn"
Journal Title:Sci Total Environ
Year:2017
Volume:20170719
Issue:
Page Number:1339 - 1347
DOI: 10.1016/j.scitotenv.2017.06.238
ISSN/ISBN:1879-1026 (Electronic) 0048-9697 (Linking)
Abstract:"The risk assessment code (RAC) is a common method for assessing heavy metal (HM) mobility and their potential health risks, based on HM total concentration and chemical speciation. In this study, both the RAC and the influence of ambient environmental factors were investigated in a river sediment system. Sixty-eight sediment samples were collected from the main river system in Shanghai, China. The total concentration and chemical speciation of Cu, Zn, Ni, Pb, Cd, Cr, As, and Hg were determined in the samples. The influence of sediment environmental factors, such as acid-volatile sulfide (AVS), Fe & Mn, and total organic carbon (TOC), on total metal concentrations and speciation was also investigated. The relationship between the main environmental media and distribution of HMs was discussed using PCA and NMDS. The transfer-transformation behaviors of Pb, Ni, and Cr were mainly controlled by AVS and TOC while Zn, Cu, and Cd were influenced by Fe & Mn and TOC. The relationship between the RAC value of HM and environmental factors revealed that 7% of Cr, 23% of Ni, and 15% of Pb had a high risk of mobility at TOC values below 3.5% and sulfite contents below 10mmol/kg. In comparison, 29%, 10%, and 10% of Zn, Cu, and Cd, respectively, had a high risk of mobility at TOC<3.5% and Fe & Mn content >4x10(5)mg/kg. Evidently, the chemical fractions of HM had a strong dependence on the S, Fe, Mn, and organic compounds in the sediment. This study provides a promising pathway for the rapid evaluation of potential risks from HMs in river sediments"
Keywords:Heavy metals Multivariate analysis techniques Risk assessment Sediment;
Notes:"PubMed-not-MEDLINELiang, Guannan Zhang, Bo Lin, Mao Wu, Simiao Hou, Hao Zhang, Jia Qian, Guangren Huang, Xin Zhou, Jizhi eng Netherlands 2017/07/26 Sci Total Environ. 2017 Dec 31; 607-608:1339-1347. doi: 10.1016/j.scitotenv.2017.06.238. Epub 2017 Jul 19"

 
Back to top
 
Citation: El-Sayed AM 2025. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2025 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 09-01-2025