Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractBiosynthesis of iridoid sex pheromones in aphids    Next AbstractEffect of acute copper sulfate exposure on olfactory responses to amino acids and pheromones in goldfish (Carassius auratus) »

BMC Genomics


Title:Analysis of the goldfish Carassius auratus olfactory epithelium transcriptome reveals the presence of numerous non-olfactory GPCR and putative receptors for progestin pheromones
Author(s):Kolmakov NN; Kube M; Reinhardt R; Canario AV;
Address:"Centro de Ciencias do Mar, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal. nkolmakov@ualg.pt"
Journal Title:BMC Genomics
Year:2008
Volume:20080920
Issue:
Page Number:429 -
DOI: 10.1186/1471-2164-9-429
ISSN/ISBN:1471-2164 (Electronic) 1471-2164 (Linking)
Abstract:"BACKGROUND: The goldfish (Carassius auratus) uses steroids and prostaglandins as pheromone cues at different stages of the reproductive cycle to facilitate spawning synchronization. Steroid progestin pheromone binding has been detected in goldfish olfactory membranes but the receptors responsible for this specific binding remain unknown. In order to shed some light on the olfactory epithelium transcriptome and search for possible receptor candidates a large set of EST from this tissue were analysed and compared to and combined with a similar zebrafish (Danio rerio) resource. RESULTS: We generated 4,797 high quality sequences from a normalized cDNA library of the goldfish olfactory epithelium, which were clustered in 3,879 unique sequences, grouped in 668 contigs and 3,211 singletons. BLASTX searches produced 3,243 significant (E-value < e(-10)) hits and Gene Ontology (GO) analysis annotated a further 1,223 of these genes (37.7%). Comparative analysis with zebrafish olfactory epithelium ESTs revealed 1,088 identical unigenes. The transcriptome size of both species was estimated at about 16,400 unigenes, based on the proportion of genes identified involved in Glucose Metabolic Process. Of 124 G-protein coupled receptors identified in the olfactory epithelium of both species, 56 were olfactory receptors. Beta and gamma membrane progestin receptors were also isolated by subcloning of RT-PCR products from both species and an olfactory epithelium specific splice form identified. CONCLUSION: The high similarity between the goldfish and zebrafish olfactory systems allowed the creation of a 'cyprinid' olfactory epithelium library estimated to represent circa 70% of the transcriptome. These results are an important resource for the identification of components of signalling pathways involved in olfaction as well as putative targets for pharmacological and histochemical studies. The possible function of the receptors identified in the olfactory system is described. Moreover, the role of olfactory epithelium specific isoforms of classical membrane progestin receptor genes as candidates for preovulatory pheromone sensing is discussed"
Keywords:"Amino Acid Sequence Animals Expressed Sequence Tags Female *Gene Expression Profiling Goldfish/*genetics Male Models, Molecular Molecular Sequence Data Olfactory Mucosa/*metabolism Pheromones/metabolism Receptors, G-Protein-Coupled/*chemistry Receptors, P;"
Notes:"MedlineKolmakov, Nikolay N Kube, Michael Reinhardt, Richard Canario, Adelino V M eng Research Support, Non-U.S. Gov't England 2008/09/23 BMC Genomics. 2008 Sep 20; 9:429. doi: 10.1186/1471-2164-9-429"

 
Back to top
 
Citation: El-Sayed AM 2025. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2025 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 10-01-2025