Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractEfficiency of clay--TiO2 nanocomposites on the photocatalytic elimination of a model hydrophobic air pollutant    Next AbstractApplication of a solid electrolyte CO(2) sensor for the analysis of standard volatile organic compound gases »

Proc Natl Acad Sci U S A


Title:Mycosporine-like amino acids are multifunctional molecules in sea hares and their marine community
Author(s):Kicklighter CE; Kamio M; Nguyen L; Germann MW; Derby CD;
Address:"Neuroscience Institute, and Department of Biology, Georgia State University, Atlanta, GA 30303, USA"
Journal Title:Proc Natl Acad Sci U S A
Year:2011
Volume:20110627
Issue:28
Page Number:11494 - 11499
DOI: 10.1073/pnas.1103906108
ISSN/ISBN:1091-6490 (Electronic) 0027-8424 (Print) 0027-8424 (Linking)
Abstract:"Molecules of keystone significance are relatively rare, yet mediate a variety of interactions between organisms. They influence the distribution and abundance of species, the transfer of energy across multiple trophic levels, and thus they play significant roles in structuring ecosystems. Despite their potential importance in facilitating our understanding of ecological systems, only three molecules thus far have been proposed as molecules of keystone significance: saxitoxin and dimethyl sulfide in marine communities and tetrodotoxin in riparian communities. In the course of studying the neuroecology of chemical defenses, we identified three mycosporine-like amino acids (MAAs)--N-ethanol palythine (= asterina-330), N-isopropanol palythine (= aplysiapalythine A), and N-ethyl palythine (= aplysiapalythine B)--as intraspecific alarm cues for sea hares (Aplysia californica). These alarm cues are released in the ink secretion of sea hares and cause avoidance behaviors in neighboring conspecifics. Further, we show that these three bioactive MAAs, two [aplysiapalythine A (APA) and -B (APB)] being previously unknown molecules, are present in the algal diet of sea hares and are concentrated in their defensive secretion as well as in their skin. MAAs are known to be produced by algae, fungi, and cyanobacteria and are acquired by many aquatic animals through trophic interactions. MAAs are widely used as sunscreens, among other uses, but sea hares modify their function to serve a previously undocumented role, as intraspecific chemical cues. Our findings highlight the multifunctionality of MAAs and their role in ecological connectivity, suggesting that they may function as molecules of keystone significance in marine ecosystems"
Keywords:"Amino Acids/chemistry/*physiology Animal Communication Animals Aplysia/*physiology Behavior, Animal/physiology Cyclohexanols/chemistry Diet Ecosystem Glycine/*analogs & derivatives/chemistry/physiology Molecular Structure Pheromones/physiology Rhodophyta/;neuroscience;"
Notes:"MedlineKicklighter, Cynthia E Kamio, Michiya Nguyen, Linh Germann, Markus W Derby, Charles D eng Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. 2011/06/29 Proc Natl Acad Sci U S A. 2011 Jul 12; 108(28):11494-9. doi: 10.1073/pnas.1103906108. Epub 2011 Jun 27"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 05-12-2024