Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractUnique patterns of mating pheromone presence and absence could result in the ambiguous sexual behaviors of Colletotrichum species    Next AbstractPopulation Distribution and Range Expansion of the Invasive Mexican Rice Borer (Lepidoptera: Crambidae) in Louisiana »

BMC Genomics


Title:Structure and number of mating pheromone genes is closely linked to sexual reproductive strategy in Huntiella
Author(s):Wilson AM; Wingfield MJ; Wingfield BD;
Address:"Forestry and Agricultural Biotechnology Institute (FABI), Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, 0028, South Africa. andi.wilson@fabi.up.ac.za. Forestry and Agricultural Biotechnology Institute (FABI), Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, 0028, South Africa"
Journal Title:BMC Genomics
Year:2023
Volume:20230513
Issue:1
Page Number:261 -
DOI: 10.1186/s12864-023-09355-9
ISSN/ISBN:1471-2164 (Electronic) 1471-2164 (Linking)
Abstract:"BACKGROUND: Huntiella resides in the Ceratocystidaceae, a family of fungi that accommodates important plant pathogens and insect-associated saprotrophs. Species in the genus have either heterothallic or unisexual (a form of homothallism) mating systems, providing an opportunity to investigate the genetic mechanisms that enable transitions between reproductive strategies in related species. Two newly sequenced Huntiella genomes are introduced in this study and comparative genomics and transcriptomics tools are used to investigate the differences between heterothallism and unisexuality across the genus. RESULTS: Heterothallic species harbored up to seven copies of the a-factor pheromone, each of which possessed numerous mature peptide repeats. In comparison, unisexual Huntiella species had only two or three copies of this gene, each with fewer repeats. Similarly, while the heterothallic species expressed up to 12 copies of the mature alpha-factor pheromone, unisexual species had up to six copies. These significant differences imply that unisexual Huntiella species do not rely on a mating partner recognition system in the same way that heterothallic fungi do. CONCLUSION: While it is suspected that mating type-independent pheromone expression is the mechanism allowing for unisexual reproduction in Huntiella species, our results suggest that the transition to unisexuality may also have been associated with changes in the genes governing the pheromone pathway. While these results are specifically related to Huntiella, they provide clues leading to a better understanding of sexual reproduction and the fluidity of mating strategies in fungi more broadly"
Keywords:"*Pheromones/genetics/metabolism Genes, Mating Type, Fungal/genetics Reproduction/genetics *Ascomycota/genetics Cell Communication Heterothallism Homothallism Huntiella Mating pheromones Mating strategy Sexual reproduction Sexual strategy Unisexuality;"
Notes:"MedlineWilson, Andi M Wingfield, Michael J Wingfield, Brenda D eng 138519/National Research Foundation/ 98353/Department of Science and Innovation, South Africa/ England 2023/05/14 BMC Genomics. 2023 May 13; 24(1):261. doi: 10.1186/s12864-023-09355-9"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 27-12-2024