Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractVOC and carbonyl compound emissions of a fiberboard resulting from a coriander biorefinery: comparison with two commercial wood-based building materials    Next Abstract[Stress as an indicator of individual-typologic differences] »

Environ Sci Pollut Res Int


Title:A review of biomarker compounds as source indicators and tracers for air pollution
Author(s):Simoneit BR;
Address:"Environmental and Petroleum Geochemistry Group, College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, OR, USA"
Journal Title:Environ Sci Pollut Res Int
Year:1999
Volume:6
Issue:3
Page Number:159 - 169
DOI: 10.1007/BF02987621
ISSN/ISBN:0944-1344 (Print) 0944-1344 (Linking)
Abstract:"An overview of the application of organic geochemistry to the analysis of organic matter on aerosol particles is presented here. This organic matter is analyzed as solvent extractable bitumen/ lipids by gas chromatography-mass spectrometry. The organic geochemical approach assesses the origin, the environmental history and the nature of secondary products of organic matter by using the data derived from specific molecular analyses. Evaluations of production and fluxes, with cross-correlations can thus be made by the application of the same separation and analytical procedures to samples from point source emissions and the ambient atmosphere. This will be illustrated here with typical examples from the ambient atmosphere (aerosol particles) and from emissions of biomass burning (smoke). Organic matter in aerosols is derived from two major sources and is admixed depending on the geographic relief of the air shed. These sources are biogenic detritus (e.g., plant wax, microbes, etc.) and anthropogenic particle emissions (e.g., oils, soot, synthetics, etc.). Both biogenic detritus and some of the anthropogenic particle emissions contain organic materials which have unique and distinguishable compound distribution patterns (C(14)-C(40)). Microbial and vascular plant lipids are the dominant biogenic residues and petroleum hydrocarbons, with lesser amounts of the pyrogenic polynuclear aromatic hydrocarbons (PAH) and synthetics (e.g., chlorinated compounds), are the major anthropogenic residues. Biomass combustion is another important primary source of particles injected into the global atmosphere. It contributes many trace substances which are reactants in atmospheric chemistry and soot paniculate matter with adsorbed biomarker compounds, most of which are unknown chemical structures. The injection of natural product organic compounds into smoke occurs primarily by direct volatilization/steam stripping and by thermal alteration based on combustion temperature. Although the molecular composition of organic matter in smoke particles is highly variable, the molecular tracers are generally still source specific. Retene has been utilized as a tracer for conifer smoke in urban aerosols, but is not always detectable. Dehydroabietic acid is generally more concentrated in the atmosphere from the same emission sources. Degradation products from biopolymers (e.g., levoglucosan from cellulose) are also excellent tracers. An overview of the biomarker compositions of biomass smoke types is presented here. Defining additional tracers of thermally-altered and directly-emitted natural products in smoke aids the assessment of the organic matter type and input from biomass combustion to aerosols. The precursor to product approach of compound characterization by organic geochemistry can be applied successfully to provide tracers for studying the chemistry and dispersion of ambient aerosols and smoke plumes"
Keywords:
Notes:"PubMed-not-MEDLINESimoneit, B R eng Germany 2008/11/15 Environ Sci Pollut Res Int. 1999; 6(3):159-69. doi: 10.1007/BF02987621"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 26-12-2024