Title: | Queen pheromone regulates programmed cell death in the honey bee worker ovary |
Author(s): | Ronai I; Oldroyd BP; Vergoz V; |
Address: | "Behaviour and Genetics of Social Insects Laboratory, School of Biological Sciences, The University of Sydney, Sydney, NSW, Australia" |
ISSN/ISBN: | 1365-2583 (Electronic) 0962-1075 (Linking) |
Abstract: | "In social insect colonies the presence of a queen, secreting her pheromones, is a key environmental cue for regulating the reproductive state of workers. However, until recently the proximate molecular mechanisms underlying facultative worker sterility were unidentified. Studies into worker oogenesis in the honey bee (Apis mellifera) have indicated that programmed cell death is central to the regulation of oogenesis. Here we investigate how queen pheromone, age of the worker and ovary state affect both programmed cell death and cell number in worker ovaries. We describe a novel method to simultaneously measure programmed cell death (caspase activity) and live cell number (estimated from the amount of adenosine triphosphate) in an insect tissue. Workers exposed to queen pheromone have higher levels of caspase activity in the ovary than those not exposed. Our results suggest that queen pheromone triggers programmed cell death at the mid-oogenesis checkpoint causing the abortion of worker oocytes and reproductive inhibition of the worker caste. Nonetheless, high caspase activity is present in activated ovaries from workers not exposed to queen pheromone. This caspase activity is most likely to be from the nurse cells undergoing programmed cell death, in late oogenesis, for normal oocyte development. Our study shows that the social environment of an organism can influence programmed cell death within a tissue" |
Keywords: | Adenosine Triphosphate/metabolism Animals *Apoptosis Bees/genetics/*physiology Caspases/genetics/metabolism Female Insect Proteins/genetics/metabolism Ovary/physiology Pheromones/*metabolism Atp brain caspase ovaries programmed cell death queen mandibular; |
Notes: | "MedlineRonai, I Oldroyd, B P Vergoz, V eng Research Support, Non-U.S. Gov't England 2016/06/21 Insect Mol Biol. 2016 Oct; 25(5):646-52. doi: 10.1111/imb.12250. Epub 2016 Jun 20" |