Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractSelf-activated ultrahigh chemosensitivity of oxide thin film nanostructures for transparent sensors    Next AbstractSexual conflict and the evolution of female mate choice and male social dominance »

Ecology


Title:Population-specific responses to light influence herbivory in the understory shrub Lindera benzoin
Author(s):Mooney EH; Niesenbaum RA;
Address:"Massachusetts College of Liberal Arts, 375 Church Street, North Adams, Massachusetts 01247, USA. e.mooney@mcla.edu"
Journal Title:Ecology
Year:2012
Volume:93
Issue:12
Page Number:2683 - 2692
DOI: 10.1890/11-1620.1
ISSN/ISBN:0012-9658 (Print) 0012-9658 (Linking)
Abstract:"Plants display photosynthetic plasticity in response to variation in light environment, and the extent of this plasticity often varies with genotype, i.e., genotype x environment interaction. Herbivory may also covary with light environment as a result of light-induced changes in photosynthetic traits. For example, greater levels of photoprotective phenolic compounds in high-light environments may reduce host quality to herbivores. We investigated intraspecific variation in photosynthetic responses to light and its consequences for herbivory in the understory shrub, Lindera benzoin (Lauraceae). We transplanted five plants from eight populations (N = 240) into three replicate sun and shade common gardens. Two years after transplantation, we tested for population x light environment interactions in six photosynthesis-related responses: specific leaf area, water content, chlorophyll content, chlorophyll fluorescence (F(0)), maximum quantum yield (F(v)/F(m)), and total phenolics. We assessed seasonal herbivory and consumption by a specialist lepidopteran herbivore (Epimecis hortaria). This allowed us to test for (1) population-specific patterns of photosynthetic acclimation and photoinhibition, (2) population-specific production of phenolics in response to photoinhibition, and (3) population-specific photosynthetic responses that contribute to population x light environment interactions in herbivory. Population X light environment interactions were insignificant in leaf variables but statistically significant for herbivory measured as consumption by E. hortaria. We found similar trends for population x light environment interactions in seasonal herbivory. Total phenolics and minimum chlorophyll fluorescence (F(0)) were significant covariates with herbivory, but their effects depended on light environment and population of origin. High-light environments eliminated differences among populations in how these leaf variables affected herbivory, while population-specific relationships were apparent in the shade. Analysis of total phenolics revealed that they were likely induced by photoinhibition, but that this response varied among the populations we assessed. However, phenolics increased herbivory in L. benzoin, which would limit the fitness value of this protective response to light-induced photoinhibition. Our results suggest that herbivores could affect evolution of photosynthetic plasticity in L. benzoin"
Keywords:Animals Herbivory/*physiology Larva/growth & development/physiology *Light Lindera/chemistry/growth & development/*physiology Moths/growth & development/*physiology Phenols/chemistry/metabolism;
Notes:"MedlineMooney, E H Niesenbaum, R A eng Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. 2013/02/26 Ecology. 2012 Dec; 93(12):2683-92. doi: 10.1890/11-1620.1"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 27-12-2024