Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractSAR11 Bacteria: The Most Abundant Plankton in the Oceans    Next AbstractTwo sisters in the same dress: Heliconius cryptic species »

J Integr Plant Biol


Title:Rhynchophorus ferrugineus attack affects a group of compounds rather than rearranging Phoenix canariensis metabolic pathways
Author(s):Giovino A; Martinelli F; Saia S;
Address:"Consiglio per la Ricerca in Agricoltura e l'analisi dell'economia agraria (CREA), Unita di ricerca per il recupero e la valorizzazione delle Specie Floricole Mediterranee (CREA-SFM), 90011, Bagheria (PA), Italy. Dipartimento di Scienze Agrarie e Forestali (SAF), University of Palermo, Viale delle Scienze, Edif. 4, 90128, Palermo, Italy. Istituto Euromediterraneo di Scienza e Tecnologia (IEMEST), Via E. Amari 123, 90139, Palermo, Italy"
Journal Title:J Integr Plant Biol
Year:2016
Volume:20151209
Issue:4
Page Number:388 - 396
DOI: 10.1111/jipb.12430
ISSN/ISBN:1744-7909 (Electronic) 1672-9072 (Linking)
Abstract:"The red palm weevil (RPW; Rhynchophorus ferrugineus) is spreading worldwide and severely harming many palm species. However, most studies on RPW focused on insect biology, and little information is available about the plant response to the attack. In the present experiment, we used metabolomics to study the alteration of the leaf metabolome of Phoenix canariensis at initial (1st stage) or advanced (2nd stage) attack by RPW compared with healthy (unattacked) plants. The leaf metabolome significantly varied among treatments. At the 1st stage of attack, plants showed a reprogramming of carbohydrate and organic acid metabolism; in contrast, peptides and lipid metabolic pathways underwent more changes during the 2nd than 1st stage of attack. Enrichment metabolomics analysis indicated that RPW attack mostly affected a particular group of compounds rather than rearranging plant metabolic pathways. Some compounds selectively affected during the 1st rather than 2nd stage (e.g. phenylalanine; tryptophan; cellobiose; xylose; quinate; xylonite; idonate; and iso-threonate; cellobiotol and arbutine) are upstream events in the phenylpropanoid, terpenoid and alkaloid biosynthesis. These compounds could be designated as potential markers of initial RPW attack. However, further investigation is needed to determine efficient early screening methods of RPW attack based on the concentrations of these molecules"
Keywords:"Animals Arecaceae/*metabolism/*parasitology Chromatography, Gas Discriminant Analysis *Metabolic Networks and Pathways Metabolome Metabolomics Plant Diseases/*parasitology Volatile Organic Compounds/*metabolism Weevils/*physiology Early detection Mediterr;"
Notes:"MedlineGiovino, Antonio Martinelli, Federico Saia, Sergio eng Research Support, Non-U.S. Gov't China (Republic : 1949- ) 2015/09/25 J Integr Plant Biol. 2016 Apr; 58(4):388-96. doi: 10.1111/jipb.12430. Epub 2015 Dec 9"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 26-12-2024