Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractProtein expression plasticity contributes to heat and drought tolerance of date palm    Next AbstractThe urinary concentration of solvents as a biological indicator of exposure: proposal for the biological equivalent exposure limit for nine solvents »

J Am Soc Mass Spectrom


Title:Study of the Chemical Ionization of Organophosphate Esters in Air Using Selected Ion Flow Tube-Mass Spectrometry for Direct Analysis
Author(s):Ghislain M; Reyrolle M; Sotiropoulos JM; Pigot T; Plaisance H; Le Bechec M;
Address:"Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IMT Mines Ales, IPREM, 64000 Pau, France"
Journal Title:J Am Soc Mass Spectrom
Year:2022
Volume:20220413
Issue:5
Page Number:865 - 874
DOI: 10.1021/jasms.2c00060
ISSN/ISBN:1879-1123 (Electronic) 1044-0305 (Linking)
Abstract:"Organophosphate esters are an emerging environmental concern since they spread persistently across all environmental compartments (air, soil, water, etc.). Measurements of semivolatile organic compounds are important but not without challenges due to their physicochemical properties. Selected ion flow tube-mass spectrometry (SIFT-MS) can be relevant for their analysis in air because it is a direct analytical method without separation that requires little preparation and no external calibration. SIFT-MS is based on the chemical reactivity of analytes with reactant ions. For volatile and semivolatile organic compound analysis in the gas phase, knowledge of ion-molecule reactions and kinetic parameters is essential for the utilization of this technology. In the present work, we focused on organophosphate esters, semivolatile compounds that are now ubiquitous in the environment. The ion-molecule reactions of eight precursor ions that are available in SIFT-MS (H(3)O(+), NO(+), O(2)(*+), OH(-), O(*-), O(2)(*-), NO(2)(-), and NO(3)(-)) with six organophosphate esters were investigated. The modeling of ion-molecule reaction pathways by calculations supported and complemented the experimental work. Organophosphate esters reacted with six of the eight precursor ions with characteristic reaction mechanisms, such as protonation with hydronium precursor ions and association with NO(+) ions, while nucleophilic substitution occurred with OH(-), O(*-), and O(2)(*-). No reaction was observed with NO(2)(-) and NO(3)(-) ions. This work shows that the direct analysis of semivolatile organic compounds is feasible using SIFT-MS with both positive and negative ionization modes"
Keywords:*Air/analysis Esters Ions/chemistry Mass Spectrometry/methods *Nitrogen Dioxide/analysis Organophosphates;
Notes:"MedlineGhislain, Mylene Reyrolle, Marine Sotiropoulos, Jean-Marc Pigot, Thierry Plaisance, Herve Le Bechec, Mickael eng 2022/04/14 J Am Soc Mass Spectrom. 2022 May 4; 33(5):865-874. doi: 10.1021/jasms.2c00060. Epub 2022 Apr 13"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 26-12-2024