Title: | Variation in Splicing Efficiency Underlies Morphological Evolution in Capsella |
Author(s): | Fujikura U; Jing R; Hanada A; Takebayashi Y; Sakakibara H; Yamaguchi S; Kappel C; Lenhard M; |
Address: | "Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Strasse 24-25, House 26, 14476 Potsdam-Golm, Germany. Graduate School of Life Sciences, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, Miyagi 980-8577, Japan. Plant Productivity Systems Research Group, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro, Tsurumi, Yokohama 230-0045, Japan. Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Strasse 24-25, House 26, 14476 Potsdam-Golm, Germany. Electronic address: michael.lenhard@uni-potsdam.de" |
DOI: | 10.1016/j.devcel.2017.11.022 |
ISSN/ISBN: | 1878-1551 (Electronic) 1534-5807 (Linking) |
Abstract: | "Understanding the molecular basis of morphological change remains a central challenge in evolutionary-developmental biology. The transition from outbreeding to selfing is often associated with a dramatic reduction in reproductive structures and functions, such as the loss of attractive pheromones in hermaphroditic Caenorhabditis elegans and a reduced flower size in plants. Here, we demonstrate that variation in the level of the brassinosteroid-biosynthesis enzyme CYP724A1 contributes to the reduced flower size of selfing Capsella rubella compared with its outbreeding ancestor Capsella grandiflora. The primary transcript of the C. rubella allele is spliced more efficiently than that of C. grandiflora, resulting in higher brassinosteroid levels. These restrict organ growth by limiting cell proliferation. More efficient splicing of the C. rubella allele results from two de novo mutations in the selfing lineage. Thus, our results highlight the potentially widespread importance of differential splicing efficiency and higher-than-optimal hormone levels in generating phenotypic variation" |
Keywords: | "Alleles Brassinosteroids/biosynthesis Capsella/anatomy & histology/*genetics/growth & development Chromosomes, Plant Cytochrome P-450 Enzyme System/biosynthesis/*genetics *Evolution, Molecular Exons Flowers/anatomy & histology/*genetics/growth & developme;" |
Notes: | "MedlineFujikura, Ushio Jing, Runchun Hanada, Atsushi Takebayashi, Yumiko Sakakibara, Hitoshi Yamaguchi, Shinjiro Kappel, Christian Lenhard, Michael eng Research Support, Non-U.S. Gov't 2017/12/26 Dev Cell. 2018 Jan 22; 44(2):192-203.e5. doi: 10.1016/j.devcel.2017.11.022. Epub 2017 Dec 21" |