Title: | Photocatalytic degradation of gaseous benzene using metal oxide nanocomposites |
Author(s): | Bathla A; Vikrant K; Kukkar D; Kim KH; |
Address: | "Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea. Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea; University Centre for Research and Development, Chandigarh University, Gharuan, Mohali -140413, Punjab, India; Department of Biotechnology, Chandigarh University, Gharuan, Mohali - 140413, Punjab, India. Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea. Electronic address: kkim61@hanyang.ac.kr" |
Journal Title: | Adv Colloid Interface Sci |
DOI: | 10.1016/j.cis.2022.102696 |
ISSN/ISBN: | 1873-3727 (Electronic) 0001-8686 (Linking) |
Abstract: | "Rapid industrial growth has been accompanied by the pollution of hazardous volatile organic pollutants (VOCs) in air. Among various options available for the treatment of VOCs, the use of metal oxide composites as photocatalysts has been adopted preferably due to their potential to induce the synergistic interactions between the metal nanoparticles (NPs) and metal oxides (especially titanium dioxide (TiO(2))). In this context, an in-depth review is offered to describe the fundamental mechanism of metal oxide-based photocatalysis for the oxidation of gaseous benzene as a model VOC. The discussion has been extended further to evaluate their performances in terms of key performance metrics (e.g., quantum yield (QY), space-time yield (STY), and figure of merit (FOM)). The TiO(2)-based metallic bi-component photocatalysts (e.g., Sr(2)CeO(4)/TiO(2)) generally exhibited better photodegradation efficiency with enhanced light absorption capability than monometallic-TiO(2) (e.g., Pd-TiO(2)) composites or other modified photocatalysts (e.g., metal-organic framework (MOF)-based composites). Finally, we address the current challenges and future perspectives in this highly challenging research field" |
Keywords: | "Benzene, Photocatalysis Metal nanoparticles Metal oxide Volatile organic compounds;" |
Notes: | "PubMed-not-MEDLINEBathla, Aadil Vikrant, Kumar Kukkar, Deepak Kim, Ki-Hyun eng Review Netherlands 2022/06/01 Adv Colloid Interface Sci. 2022 Jul; 305:102696. doi: 10.1016/j.cis.2022.102696. Epub 2022 May 12" |