Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractIdentification of changes in volatile compounds in dry-cured fish during storage using HS-GC-IMS    Next AbstractLure-and-kill macrophage nanoparticles alleviate the severity of experimental acute pancreatitis »

Environ Sci Technol


Title:Investigation of Primary and Secondary Particulate Brown Carbon in Two Chinese Cities of Xi'an and Hong Kong in Wintertime
Author(s):Zhang Q; Shen Z; Zhang L; Zeng Y; Ning Z; Zhang T; Lei Y; Wang Q; Li G; Sun J; Westerdahl D; Xu H; Cao J;
Address:"Key Laboratory of Northwest Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China. Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China. Key Lab of Aerosol Chemistry & Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China. Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, Canada. Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Hong Kong, China"
Journal Title:Environ Sci Technol
Year:2020
Volume:20200313
Issue:7
Page Number:3803 - 3813
DOI: 10.1021/acs.est.9b05332
ISSN/ISBN:1520-5851 (Electronic) 0013-936X (Linking)
Abstract:"Brown carbon (BrC), an aerosol carbonaceous matter component, impacts atmospheric radiation and global climate because of its absorption in the near-ultraviolet-visible region. Simultaneous air sampling was conducted in two megacities of Xi'an (northern) and Hong Kong (southern) in China in winter of 2016-2017. The aim of this study is to determine and characterize the BrC compounds in collected filter samples. Characteristic absorption peaks corresponding to aromatic C-C stretching bands, organo-nitrates, and C horizontal lineO functional groups were seen in spectra of Xi'an samples, suggesting that the BrC was derived from freshly smoldering biomass and coal combustion as well as aqueous formation of anthropogenic secondary organic carbon. In Hong Kong, the light absorption of secondary BrC accounted for 76% of the total absorbances of BrC. The high abundance of strong C horizontal lineO groups, biogenic volatile organic compounds (BVOCs) and atmospheric oxidants suggest secondary BrC was likely formed from photochemical oxidation of BVOCs in Hong Kong. Several representative BrC molecular markers were detected using Fourier transform ion cyclotron resonance mass spectrometry and their absorption properties were simulated by quantum chemistry. The results demonstrate that light absorption capacities of secondary anthropogenic BrC with nitro-functional groups were stronger than those of biogenic secondary BrC and anthropogenic primary BrC"
Keywords:Aerosols *Air Pollutants *Carbon China Cities Coal Environmental Monitoring Hong Kong Particulate Matter;
Notes:"MedlineZhang, Qian Shen, Zhenxing Zhang, Leiming Zeng, Yaling Ning, Zhi Zhang, Tian Lei, Yali Wang, Qiyuan Li, Guohui Sun, Jian Westerdahl, Dane Xu, Hongmei Cao, Junji eng Research Support, Non-U.S. Gov't 2020/03/10 Environ Sci Technol. 2020 Apr 7; 54(7):3803-3813. doi: 10.1021/acs.est.9b05332. Epub 2020 Mar 13"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 01-07-2024