Title: | Insights on the binding mechanism between specified aldehydes and flaxseed protein using multispectral image and molecular docking |
Author(s): | Xu L; Wan Y; Liu X; Qin Z; Zhao Y; Fu X; Wei C; Liu W; |
Address: | "Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China. Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China. Electronic address: Changqing_wei@126.com. Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China. Electronic address: 1538805022@qq.com" |
DOI: | 10.1016/j.foodchem.2023.136256 |
ISSN/ISBN: | 1873-7072 (Electronic) 0308-8146 (Linking) |
Abstract: | "The binding and release behavior of flaxseed proteins to aldehydes is significant for the sensory properties of flaxseed foods. The key aldehydes of flaxseed were selected by headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) and odor activity value (OAV) method, and the interaction between flaxseed protein and flaxseed protein was investigated by multispectral, molecular docking, molecular dynamics simulation, and particle size techniques. The results showed that 2,4-decadienal presented a higher binding capability and a higher Stern-Volmer constant with flaxseed protein than pentanal, benzaldehyde, and decanal. Thermodynamic analysis revealed that hydrogen bonding and hydrophobic interactions were the main forces. Aldehydes contributed to a certain reduction in radius of gyration (Rg) value and alpha-helix content of flaxseed protein. In addition, the results of particle size showed that aldehydes caused the proteins to aggregate toward larger particles. This study could provide new insights into the interactions between flaxseed food and flavor" |
Keywords: | Molecular Docking Simulation *Flax Aldehydes/analysis Gas Chromatography-Mass Spectrometry/methods Odorants/analysis Solid Phase Microextraction/methods *Volatile Organic Compounds/analysis Aldehydes Flaxseed protein Hs-spme-gc-ms Interaction Molecular do; |
Notes: | "MedlineXu, Lingxia Wan, Yilai Liu, Xiaoxiao Qin, Zhaoyang Zhao, Yue Fu, Xizhe Wei, Changqing Liu, Wenyu eng England 2023/05/05 Food Chem. 2023 Oct 1; 422:136256. doi: 10.1016/j.foodchem.2023.136256. Epub 2023 Apr 28" |