Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractInfusion of an acidified ethanolic-dextrose solution enhances urinary ammonium excretion and increases acid resilience in non-mechanically ventilated acidotic rabbits    Next AbstractEvaluating the success of treatments that slow spread of an invasive insect pest »

Ecology


Title:Invasion in patchy landscapes is affected by dispersal mortality and mate-finding failure
Author(s):Walter JA; Firebaugh AL; Tobin PC; Haynes KJ;
Address:"Department of Environmental Sciences, University of Virginia, 291 McCormick Road, Charlottesville, Virginia, 22904, USA. Blandy Experimental Farm, University of Virginia, 400 Blandy Farm Lane, Boyce, Virginia, 22620, USA. Department of Ecology and Evolutionary Biology and Kansas Biological Survey, University of Kansas, 2101 Constant Avenue, Lawrence, Kansas, 66047, USA. School of Environmental and Forest Sciences, University of Washington, 4000 15th Avenue NE, Seattle, Washington, 98195, USA"
Journal Title:Ecology
Year:2016
Volume:97
Issue:12
Page Number:3389 - 3401
DOI: 10.1002/ecy.1583
ISSN/ISBN:0012-9658 (Print) 0012-9658 (Linking)
Abstract:"Range expansions are a function of population growth and dispersal, and nascent populations often must overcome demographic Allee effects (positive density dependence at low population densities) driven by factors such as mate-finding failure. Given the importance of individual movement to mate finding, links between landscape structure and movement may be critical to range expansion; however, landscape effects on other factors including mortality may be equally or more important. In one of the most comprehensive investigations of the interactions of these processes to date, we combined field experiments, simulation modeling, and analysis of empirical spread patterns to investigate how landscape structure affected the spread of the gypsy moth in Virginia and West Virginia. In experiments designed to assess how landscape attributes affect mate finding, we found adult males resisted leaving forest patches and the probability of locating a pheromone source declined more rapidly over distance in non-forest matrix than in forest. We used these findings to develop individual-based simulation models of gypsy moth population dynamics and spread in complex patch-matrix landscapes. The models produced an Allee effect that strengthened with reductions in forested area, but owing more so to dispersal mortality than to effects on mate location. Predicted maximum rates of population spread grew with increases in forest area due to increasing success of long-distance transport events. Evaluations of empirical data showed relationships between spread rates and landscape structure largely consistent with model predictions. We conclude rates of spread were largely driven by long-distance dispersal events, the success of which was influenced primarily by dispersal mortality of larvae in unsuitable matrix, and that landscape effects on mate location played a secondary role. Though influences of landscape structure on mate location appear to be unimportant to the spread of the gypsy moth, we predict they would have stronger effects on more dispersive species"
Keywords:"*Animal Distribution Animals *Forests Male Models, Biological Moths/*physiology Reproduction/*physiology Time Factors Lymantria dispar Allee effect critical density;"
Notes:"MedlineWalter, Jonathan A Firebaugh, Ariel L Tobin, Patrick C Haynes, Kyle J eng 2016/12/03 Ecology. 2016 Dec; 97(12):3389-3401. doi: 10.1002/ecy.1583"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 05-11-2024