Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractIdentification of loci affecting flavour volatile emissions in tomato fruits    Next AbstractThe alarm reaction of coho salmon parr is impaired by the carbamate fungicide IPBC »

Biotechnol Bioeng


Title:Biodegradation kinetics of volatile hydrophobic organic compounds in cultures with variable fractional volumes
Author(s):Tien TH; Katayama A;
Address:"Research Center for Advanced Waste and Emission Management, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan. tien@rescwe.nagoya-u.ac.jp"
Journal Title:Biotechnol Bioeng
Year:2004
Volume:85
Issue:6
Page Number:580 - 588
DOI: 10.1002/bit.20007
ISSN/ISBN:0006-3592 (Print) 0006-3592 (Linking)
Abstract:"An extension of the models developed by Guha and Jaffe (Biotechnol Bioeng [1996] 50:693-699) to describe the phenanthrene biodegradation kinetics for the cultures with variable fractional volumes is presented. Batch experiments were conducted with a culture capable of degrading the phenanthrene using a single culture vessel from which samples were withdrawn over time to monitor the disappearance of phenanthrene. For accurate measurement of phenanthrene concentrations, a sampling procedure designed for quantifying the sorption of phenanthrene onto glassware was also introduced. The Monod parameters were estimated by nonlinear regression analyses of simultaneous solutions to the substrate utilization/volatilization and Monod equations for growth of the cell mass. The results demonstrate that the models were able to be extended to phenanthrene-degrading cultures with variable fractional volumes. When the ratio between sampling volume and volume of the culture medium was relatively small, the parameters obtained were similar to those which would be obtained using constant fractional volumes of culture medium. It was also found that the model's fit to the phenanthrene disappearance data in this study were better than those obtained by Guha and Jaffe, implying that the sorption process of phenanthrene during the sampling period could significantly affect the measurement of phenanthrene concentrations. Failing to account for these losses led to less accurate measurements of substrate concentrations, which in turn resulted in a poor estimation of the parameters. The findings of this study reduce considerably the experimental work necessary in the estimation of Monod kinetic parameters for the purpose of modeling"
Keywords:"Biodegradation, Environmental Cell Culture Techniques/*methods Cell Division Computer Simulation Hydrophobic and Hydrophilic Interactions Kinetics *Models, Biological Organic Chemicals/metabolism Oxygen Consumption/physiology Phenanthrenes/*chemistry/*met;"
Notes:"MedlineTien, Truong Hong Katayama, Arata eng Comparative Study Evaluation Study Research Support, Non-U.S. Gov't Validation Study 2004/02/18 Biotechnol Bioeng. 2004 Mar 20; 85(6):580-8. doi: 10.1002/bit.20007"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 26-12-2024