Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractA new headspace solid-phase microextraction coupled with gas chromatography-tandem mass spectrometry method for the simultaneous quantification of 21 microbial volatile organic compounds in urine and blood    Next AbstractFacing energy limitations - approaches to increase basil (Ocimum basilicum L.) growth and quality by different increasing light intensities emitted by a broadband LED light spectrum (400-780 nm) »

Plants (Basel)


Title:"Increased Plant Quality, Greenhouse Productivity and Energy Efficiency with Broad-Spectrum LED Systems: A Case Study for Thyme (Thymus vulgaris L.)"
Author(s):Tabbert JM; Schulz H; Krahmer A;
Address:"Plant Analysis and Storage Product Protection, Institute for Ecological Chemistry, Julius Kuhn Institute-Federal Research Centre for Cultivated Plants, Konigin-Luise-Str. 19, 14195 Berlin, Germany. Institute of Pharmacy, Freie Universitat Berlin, Konigin-Luise-Str. 2-4, 14195 Berlin, Germany. Consulting & Project Management for Medicinal and Aromatic Plants, Waltraudstrasse 4, 14532 Stahnsdorf, Germany"
Journal Title:Plants (Basel)
Year:2021
Volume:20210512
Issue:5
Page Number: -
DOI: 10.3390/plants10050960
ISSN/ISBN:2223-7747 (Print) 2223-7747 (Electronic) 2223-7747 (Linking)
Abstract:"A light-emitting diode (LED) system covering plant-receptive wavebands from ultraviolet to far-red radiation (360 to 760 nm, 'white' light spectrum) was investigated for greenhouse productions of Thymus vulgaris L. Biomass yields and amounts of terpenoids were examined, and the lights' productivity and electrical efficiency were determined. All results were compared to two conventionally used light fixture types (high-pressure sodium lamps (HPS) and fluorescent lights (FL)) under naturally low irradiation conditions during fall and winter in Berlin, Germany. Under LED, development of Thymus vulgaris L. was highly accelerated resulting in distinct fresh yield increases per square meter by 43% and 82.4% compared to HPS and FL, respectively. Dry yields per square meter also increased by 43.1% and 88.6% under LED compared to the HPS and FL lighting systems. While composition of terpenoids remained unaffected, their quantity per gram of leaf dry matter significantly increased under LED and HPS as compared to FL. Further, the power consumption calculations revealed energy savings of 31.3% and 20.1% for LED and FL, respectively, compared to HPS. In conclusion, the implementation of a broad-spectrum LED system has tremendous potential for increasing quantity and quality of Thymus vulgaris L. during naturally insufficient light conditions while significantly reducing energy consumption"
Keywords:biomass efficacy daily light integral energy consumption light-emitting diode plant morphology volatile organic compounds;
Notes:"PubMed-not-MEDLINETabbert, Jenny Manuela Schulz, Hartwig Krahmer, Andrea eng 204016000016/80168353/European Innovation Partnership for Improvement of Agricultural Productivity and Sustainability/ Switzerland 2021/06/03 Plants (Basel). 2021 May 12; 10(5):960. doi: 10.3390/plants10050960"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 27-12-2024