Title: | Novel Specificity of IDO Enzyme Involved in the Biosynthesis of Mating Pheromone in the Ciliate Blepharisma stoltei |
Author(s): | Sugiura M; Yuasa HJ; Harumoto T; |
Address: | "Department of Chemistry, Biology, and Environmental Sciences, Faculty of Science, Nara Women's University, Nara 630-8506, Japan. Laboratory of Biochemistry, Department of Applied Science, Faculty of Science, National University Corporation Kochi University, Kochi 780-8520, Japan. Department of Chemistry, Biology, and Environmental Sciences, Faculty of Science, Nara Women's University, Nara 630-8506, Japan. Electronic address: harumoto@cc.nara-wu.ac.jp" |
DOI: | 10.1016/j.protis.2017.09.003 |
ISSN/ISBN: | 1618-0941 (Electronic) 1434-4610 (Linking) |
Abstract: | "Mating pheromones (gamone 1 and gamone 2) in the ciliate Blepharisma are biologically active substances that trigger sexual reproduction (conjugation) under starvation conditions. Gamone 1 is a glycoprotein secreted by type I cells, and gamone 2 is a tryptophan (Trp)-derivative compound secreted by type II cells. Both gamones stimulate complementary mating type cells to promote each gamone production and induce pair formation. To elucidate the biosynthetic pathway of gamone 2, we investigated the enzymes involved in the pathway and the specificity of the enzymes. An RNA-seq analysis revealed that Blepharisma stoltei (Heterotrichea) possesses four indoleamine 2,3-dioxygenase (IDO) genes showing distinct expression patterns. Along with results from real-time PCR, these findings demonstrated that each IDO gene has different expression patterns that depend on the cellular conditions. Expression of IDO-I was correlated with the intensity of gamone 2 expression, and the recombinant IDO-I protein showed catalytic activity for 5-hydroxy-L-Trp (5-HTP) but very weak activity for L-Trp. Our results indicate that IDO-I is an enzyme evolutionary specialized to gamone 2 production in Blepharisma, and that the biosynthetic pathway for gamone 2 uses 5-HTP as an intermediate" |
Keywords: | "Aminophenols/*metabolism Ciliophora/enzymology/*genetics *Conjugation, Genetic Indoleamine-Pyrrole 2, 3, -Dioxygenase/genetics/metabolism Lactates/*metabolism Pheromones/*biosynthesis Protozoan Proteins/*genetics/metabolism Real-Time Polymerase Chain Reacti;" |
Notes: | "MedlineSugiura, Mayumi Yuasa, Hajime J Harumoto, Terue eng Germany 2017/11/11 Protist. 2017 Dec; 168(6):686-696. doi: 10.1016/j.protis.2017.09.003. Epub 2017 Sep 18" |