Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractCowpea chloroplastic ATP synthase is the source of multiple plant defense elicitors during insect herbivory    Next Abstract"Biosynthesis, elicitation and roles of monocot terpenoid phytoalexins" »

Plant Physiol


Title:An amino acid substitution inhibits specialist herbivore production of an antagonist effector and recovers insect-induced plant defenses
Author(s):Schmelz EA; Huffaker A; Carroll MJ; Alborn HT; Ali JG; Teal PE;
Address:"Chemistry Research Unit, Agricultural Research Service, Center of Medical, Agricultural, and Veterinary Entomology, United States Department of Agriculture, Gainesville, Florida 32608, USA. eric.schmelz@ars.usda.gov"
Journal Title:Plant Physiol
Year:2012
Volume:20120924
Issue:3
Page Number:1468 - 1478
DOI: 10.1104/pp.112.201061
ISSN/ISBN:1532-2548 (Electronic) 0032-0889 (Print) 0032-0889 (Linking)
Abstract:"Plants respond to insect herbivory through the production of biochemicals that function as either direct defenses or indirect defenses via the attraction of natural enemies. While attack by closely related insect pests can result in distinctive levels of induced plant defenses, precise biochemical mechanisms responsible for differing responses remain largely unknown. Cowpea (Vigna unguiculata) responds to Fall armyworm (Spodoptera frugiperda) herbivory through the detection of fragments of chloroplastic ATP synthase gamma-subunit proteins, termed inceptin-related peptides, present in larval oral secretions (OS). In contrast to generalists like Fall armyworm, OS of the legume-specializing velvetbean caterpillar (VBC; Anticarsia gemmatalis) do not elicit ethylene production and demonstrate significantly lower induced volatile emission in direct herbivory comparisons. Unlike all other Lepidoptera OS examined, which preferentially contain inceptin (Vu-In; +ICDINGVCVDA-), VBC OS contain predominantly a C-terminal truncated peptide, Vu-In(-A) (+ICDINGVCVD-). Vu-In(-A) is both inactive and functions as a potent naturally occurring antagonist of Vu-In-induced responses. To block antagonist production, amino acid substitutions at the C terminus were screened for differences in VBC gut proteolysis. A valine-substituted peptide (Vu-In(DeltaV); +ICDINGVCVDV-) retaining full elicitor activity was found to accumulate in VBC OS. Compared with the native polypeptide, VBC that previously ingested 500 pmol of the valine-modified chloroplastic ATP synthase gamma-subunit precursor elicited significantly stronger plant responses in herbivory assays. We demonstrate that a specialist herbivore minimizes the activation of defenses by converting an elicitor into an antagonist effector and identify an amino acid substitution that recovers these induced plant defenses to a level observed with generalist herbivores"
Keywords:"Amino Acid Sequence Amino Acid Substitution/*genetics Animals Chloroplast Proton-Translocating ATPases/metabolism Fabaceae/drug effects/*immunology/*parasitology Herbivory/drug effects/*physiology Larva/drug effects/physiology Models, Biological Molecular;"
Notes:"MedlineSchmelz, Eric A Huffaker, Alisa Carroll, Mark J Alborn, Hans T Ali, Jared G Teal, Peter E A eng Research Support, U.S. Gov't, Non-P.H.S. 2012/09/26 Plant Physiol. 2012 Nov; 160(3):1468-78. doi: 10.1104/pp.112.201061. Epub 2012 Sep 24"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 26-12-2024