Title: | Coupled use of Fe-impregnated biochar and urea-hydrogen peroxide to simultaneously reduce soil-air emissions of fumigant and improve crop growth |
Author(s): | Qin J; Ashworth DJ; Yates SR; Shen G; |
Address: | "School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, PR China. Department of Environmental Sciences, University of California, Riverside, California 92521, United States; USDA-ARS, Salinity Laboratory, 450 West Big Springs Road, Riverside, California 92507, United States. Electronic address: daniel.ashworth@ars.usda.gov. USDA-ARS, Salinity Laboratory, 450 West Big Springs Road, Riverside, California 92507, United States. School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, PR China. Electronic address: gqsh@sjtu.edu.cn" |
DOI: | 10.1016/j.jhazmat.2020.122762 |
ISSN/ISBN: | 1873-3336 (Electronic) 0304-3894 (Linking) |
Abstract: | "Reducing the emissions of soil fumigants such as 1,3-dichloropropene (1,3-D) is essential to protecting air quality. Although biochar is useful in reducing such emissions, biochar-adsorbed fumigants may desorb and cause secondary air pollution. This study investigated the degradation of 1,3-D on iron (Fe)-impregnated biochar (FBC) amended with urea-hydrogen peroxide (UHP). The results indicated the degradation rate of trans-1,3-D on FBC-UHP was 54-fold higher than that on pristine biochar (PBC). Electron paramagnetic resonance (EPR) combined with other characterization methods revealed that the presence of semiquinone-type radicals in FBC effectively accelerated the Fe(III)/Fe(II) cycleto maintain enough Fe(IIII) for UHP activation and .OH generation. .OH, rather than .O(2)(-), was the dominant active oxidant. Soil column tests showed that application of FBC to the soil surface reduced cumulative 1,3-D emissions from 34.80 % (bare soil) to 0.81%. After the column experiment, the mixing of the FBC with UHP resulted in the residual cis-isomers decreasing from 32.5% to 10.5%. Greenhouse bioassays showed that mixing post-1,3-D degradation FBC-UHP with soil significantly promoted lettuce growth relative to PBC. The findings of this study provide a new approach for biochar application, especially for the emission reduction of hazardous volatile organic compounds from soil" |
Keywords: | "*Allyl Compounds Carbamide Peroxide Charcoal Ferric Compounds *Hydrocarbons, Chlorinated/analysis Hydrogen Peroxide Soil Fe-impregnated biochar Uhp crop growth fumigant;" |
Notes: | "MedlineQin, Jiaolong Ashworth, Daniel J Yates, Scott R Shen, Guoqing eng Research Support, Non-U.S. Gov't Netherlands 2020/05/04 J Hazard Mater. 2020 Sep 5; 396:122762. doi: 10.1016/j.jhazmat.2020.122762. Epub 2020 Apr 19" |