Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractFertility and mating behaviour of androgenized mice    Next AbstractA novel NADH-dependent carbonyl reductase with an extremely broad substrate range from Candida parapsilosis: purification and characterization »

Ecol Lett


Title:Herbivore control of annual grassland composition in current and future environments
Author(s):Peters HA; Cleland EE; Mooney HA; Field CB;
Address:
Journal Title:Ecol Lett
Year:2006
Volume:9
Issue:1
Page Number:86 - 94
DOI: 10.1111/j.1461-0248.2005.00847.x
ISSN/ISBN:1461-0248 (Electronic) 1461-023X (Linking)
Abstract:"Selective consumption by herbivores influences the composition and structure of a range of plant communities. Anthropogenically driven global environmental changes, including increased atmospheric carbon dioxide (CO(2)), warming, increased precipitation, and increased N deposition, directly alter plant physiological properties, which may in turn modify herbivore consumption patterns. In this study, we tested the hypothesis that responses of annual grassland composition to global changes can be predicted exclusively from environmentally induced changes in the consumption patterns of a group of widespread herbivores, the terrestrial gastropods. This was done by: (1) assessing gastropod impacts on grassland composition under ambient conditions; (2) quantifying environmentally induced changes in gastropod feeding behaviour; (3) predicting how grassland composition would respond to global-change manipulations if influenced only by herbivore consumption preferences; and (4) comparing these predictions to observed responses of grassland community composition to simulated global changes. Gastropod herbivores consume nearly half of aboveground production in this system. Global changes induced species-specific changes in plant leaf characteristics, leading gastropods to alter the relative amounts of different plant types consumed. These changes in gastropod feeding preferences consistently explained global-change-induced responses of functional group abundance in an intact annual grassland exposed to simulated future environments. For four of the five global change scenarios, gastropod impacts explained > 50% of the quantitative changes, indicating that herbivore preferences can be a major driver of plant community responses to global changes"
Keywords:Animals *Ecosystem Feeding Behavior/*physiology Forecasting Gastropoda/*physiology Poaceae/*physiology Population Dynamics;
Notes:"MedlinePeters, Halton A Cleland, Elsa E Mooney, Harold A Field, Christopher B eng Letter Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. England 2006/09/09 Ecol Lett. 2006 Jan; 9(1):86-94. doi: 10.1111/j.1461-0248.2005.00847.x"

 
Back to top
 
Citation: El-Sayed AM 2025. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2025 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 13-01-2025