Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractCryptococcal titan cell formation is regulated by G-protein signaling in response to multiple stimuli    Next AbstractActive pollination favours sexual dimorphism in floral scent »

J Chem Ecol


Title:Interspecific variation of floral scent composition in Glochidion and its association with host-specific pollinating seed parasite (Epicephala)
Author(s):Okamoto T; Kawakita A; Kato M;
Address:"Graduate School of Human and Environmental Studies, Kyoto University, Yoshida-Nihonmatsu-cho, Sakyo, Kyoto, 606-8501, Japan. okamoto@mocci.mbox.media.kyoto-u.ac.jp"
Journal Title:J Chem Ecol
Year:2007
Volume:20070330
Issue:5
Page Number:1065 - 1081
DOI: 10.1007/s10886-007-9287-0
ISSN/ISBN:0098-0331 (Print) 0098-0331 (Linking)
Abstract:"Trees of the genus Glochidion (Phyllanthaceae) are pollinated by females of Epicephala moths (Gracillariidae) whose larvae consume the seeds of the flowers that they pollinate. Each Epicephala moth species is specific locally to a single host species, although two to four Glochidion hosts often cooccur. To investigate the role of olfactory signals in maintaining the plant-moth specificity, we analyzed floral scent composition of five Glochidion species by using gas chromatography-mass spectrometry (GC-MS) and conducted Y-tube olfactometer bioassays with Epicephala moths and their host flowers. The GC-MS analysis showed that the floral scents of the five Glochidion species are dominated by (R)-(-)- and (S)-(+)-linalool, and (E)- and (Z)-beta-ocimene, and that each species produces 6-20 compounds. Transformation of scent profiles by using chord-normalized expected species shared distances and analysis of the data with nonmetric multidimensional scaling showed that floral volatiles of cooccurring Glochidion species can be distinguished by relative chemical composition, especially that of minor compounds. The bioassay with pollinators of Glochidion lanceolatum and Glochidion ruburm further indicated that Epicephala moths are capable of discriminating their hosts by using floral odor. The results suggest that the floral scent of Glochidion is one of the important key signals that mediate the encounters of the species-specific partners in the Glochidion-Epicephala mutualism"
Keywords:"Animals Behavior, Animal/physiology Female Flowers/*chemistry Magnoliopsida/*physiology Male Moths/*physiology *Odorants Seeds Symbiosis Terpenes/analysis;"
Notes:"MedlineOkamoto, Tomoko Kawakita, Atsushi Kato, Makoto eng Research Support, Non-U.S. Gov't 2007/03/31 J Chem Ecol. 2007 May; 33(5):1065-81. doi: 10.1007/s10886-007-9287-0. Epub 2007 Mar 30"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 28-09-2024