Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractEmissions and ambient air monitoring trends of lower olefins across Texas from 2002 to 2012    Next AbstractAccurate Measurement of the Optical Constants n and k for a Series of 57 Inorganic and Organic Liquids for Optical Modeling and Detection »

EBioMedicine


Title:Breath testing for SARS-CoV-2 infection
Author(s):Myers R; Ruszkiewicz DM; Meister A; Bartolomeu C; Atkar-Khattra S; Thomas CLP; Lam S;
Address:"Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; British Columbia Cancer Research Institute; Vancouver, British Columbia, Canada. Electronic address: renelle.myers@vch.ca. Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; British Columbia Cancer Research Institute; Vancouver, British Columbia, Canada. British Columbia Cancer Research Institute; Vancouver, British Columbia, Canada. Centre for Analytical Science, Department of Chemistry, Loughborough University, Loughborough, UK"
Journal Title:EBioMedicine
Year:2023
Volume:20230428
Issue:
Page Number:104584 -
DOI: 10.1016/j.ebiom.2023.104584
ISSN/ISBN:2352-3964 (Electronic) 2352-3964 (Linking)
Abstract:"BACKGROUND: From a public health perspective, the identification of individuals with mild respiratory symptoms due to SARS-CoV-2 infection is important to contain the spread of the disease. The objective of this study was to identify volatile organic compounds (VOCs) in exhaled breath common to infection with different variants of the SARS-CoV-2 virus to inform the development of a point-of-care breath test to detect infected individuals with mild symptoms. METHODS: A prospective, real-world, observational study was conducted on mildly symptomatic out-patients presenting to community test-sites for RT-qPCR SARS-CoV-2 testing when the Alpha, Beta, and Delta variants were driving the COVID-19 pandemic. VOCs in exhaled breath were compared between PCR-positive and negative individuals using TD-GC-ToF-MS. Candidate VOCs were tested in an independent set of samples collected during the Omicron phase of the pandemic. FINDINGS: Fifty breath samples from symptomatic RT-qPCR positive and 58 breath samples from test-negative, but symptomatic participants were compared. Of the 50 RT-qPCR-positive participants, 22 had breath sampling repeated 8-12 weeks later. PCA-X model yielded 12 distinct VOCs that discriminated SARS-CoV-2 active infection compared to recovery/convalescence period, with an area under the receiver operator characteristic curve (AUROC), of 0.862 (0.747-0.977), sensitivity, and specificity of 82% and 86%, respectively. PCA-X model from 50 RT-qPCR positive and 58 negative symptomatic participants, yielded 11 VOCs, with AUROC of 0.72 (0.604-0.803) and sensitivity of 72%, specificity 65.5%. The 11 VOCs were validated in a separate group of SARS-CoV-2 Omicron positive patients' vs healthy controls demonstrating an AUROC of 0.96 (95% CI 0.827-0.993) with sensitivity of 80% specificity of 90%. INTERPRETATION: Exhaled breath analysis is a promising non-invasive, point-of-care method to detect mild COVID-19 infection. FUNDING: Funding for this study was a competitive grant awarded from the Vancouver Coastal Research Institute as well as funding from the BC Cancer Foundation"
Keywords:Humans *COVID-19/diagnosis SARS-CoV-2 COVID-19 Testing Pandemics Prospective Studies Breath Tests/methods Biomarkers Breath-testing Gc-ms VOCs;
Notes:"MedlineMyers, Renelle Ruszkiewicz, Dorota M Meister, Austin Bartolomeu, Crista Atkar-Khattra, Sukhinder Thomas, C L Paul Lam, Stephen eng Observational Study Netherlands 2023/05/01 EBioMedicine. 2023 Jun; 92:104584. doi: 10.1016/j.ebiom.2023.104584. Epub 2023 Apr 28"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 27-12-2024