Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous Abstract[Histologic study of stimulation of preputial glands in the mouse by androgens and inhibition by a detergent or zinc salts]    Next AbstractDC corona electric discharges for air pollution control. Part 1. Efficiency and products of hydrocarbon processing »

BMC Ecol


Title:Evidence of the exploitation of marine resource by the terrestrial insect Scapteriscus didactylus through stable isotope analyzes of its cuticle
Author(s):Maros A; Louveaux A; Lelarge C; Girondot M;
Address:"Laboratoire d'Ecologie, Systematique et Evolution (UMR 8079) Bat, 362 Universite Paris-Sud, Orsay 91405 Cedex, France. mamaros@hotmail.com"
Journal Title:BMC Ecol
Year:2006
Volume:20060508
Issue:
Page Number:6 -
DOI: 10.1186/1472-6785-6-6
ISSN/ISBN:1472-6785 (Electronic) 1472-6785 (Linking)
Abstract:"BACKGROUND: About 4 x 10(5) eggs in more than 5000 marine turtle nests are deposited every year on a 3.6 km long beach in French Guiana (South America). The dry biomass of eggs is estimated to be 5 x 10(3) kg, yet only 25% of this organic matter will return to the ocean in the form of hatchlings. Such amounts of organic matter are supposed to drive the functioning of the beach ecosystem. Previous studies have shown that egg predators and detritivorous organisms dominate the trophic relationships and the dynamics of the system. The role of a terrestrial insect Scapteriscus didactylus (Latreille), which damages up to 40% of the eggs of the marine turtle (Dermochelys coriacea), was unexpected. However it was impossible from direct observations to prove that the mole cricket consumed a significant amount of these eggs. Therefore, the precise place of the mole cricket in the nitrogen and carbon cycles of the beach ecosystem could not be determined. In order to answer this question, we looked for a marine signature of carbon and nitrogen source metabolized by the mole cricket. RESULTS: This study estimated the individual variability of delta13C and delta15N in the cuticle of Scapteriscus didactylus. The isotopic signature was compared between individuals collected at two sites: a village where mole crickets fed on human food scraps and the nearby Awala-Yalimapo beach, where food availability depends seasonally on the nesting sea turtles. The mole crickets collected near the habitations garbage showed no significant variations in the stable isotopic signature, within-and between age groups. On the contrary, isotopic values shifted from a signature of a terrestrial herbivorous diet in the mole crickets during early developmental stages, to isotopic values in adults in accordance with the exploitation of marine animal resources. CONCLUSION: The heterogeneity of individual signatures during the year is due to a selective exploitation of the food sources, differing in space and time. Some individuals, from the beach sample consumed a sufficient quantity of turtle eggs to induce the increase of isotopic enrichment observed in the cuticle. Scapteriscus didactylus is an opportunist feeder and plays a role in the turn over of the beach organic matter"
Keywords:Animals Carbon Isotopes/analysis *Diet Ecology *Food Chain French Guiana Gryllidae/*chemistry/*growth & development Nitrogen Isotopes/analysis Ovum Reproduction Seasons Turtles;
Notes:"MedlineMaros, Alexandra Louveaux, Alain Lelarge, Caroline Girondot, Marc eng Research Support, Non-U.S. Gov't England 2006/05/10 BMC Ecol. 2006 May 8; 6:6. doi: 10.1186/1472-6785-6-6"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 03-07-2024