Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractA New Modified Artificial Bee Colony Algorithm with Exponential Function Adaptive Steps    Next AbstractCrystal and solution structures of an odorant-binding protein from the southern house mosquito complexed with an oviposition pheromone »

J Hazard Mater


Title:Electrokinetic-enhanced bioaugmentation for remediation of chlorinated solvents contaminated clay
Author(s):Mao X; Wang J; Ciblak A; Cox EE; Riis C; Terkelsen M; Gent DB; Alshawabkeh AN;
Address:"Civil and Environmental Engineering Department, Northeastern University, Boston, MA 02115, USA. x.mao@neu.edu"
Journal Title:J Hazard Mater
Year:2012
Volume:20120208
Issue:
Page Number:311 - 317
DOI: 10.1016/j.jhazmat.2012.02.001
ISSN/ISBN:1873-3336 (Electronic) 0304-3894 (Print) 0304-3894 (Linking)
Abstract:"Successful bioremediation of contaminated soils is controlled by the ability to deliver bioremediation additives, such as bacteria and/or nutrients, to the contaminated zone. Because hydraulic advection is not practical for delivery in clays, electrokinetic (EK) injection is an alternative for efficient and uniform delivery of bioremediation additive into low-permeability soil and heterogeneous deposits. EK-enhanced bioaugmentation for remediation of clays contaminated with chlorinated solvents is evaluated. Dehalococcoides (Dhc) bacterial strain and lactate ions are uniformly injected in contaminated clay and complete dechlorination of chlorinated ethene is observed in laboratory experiments. The injected bacteria can survive, grow, and promote effective dechlorination under EK conditions and after EK application. The distribution of Dhc within the clay suggests that electrokinetic transport of Dhc is primarily driven by electroosmosis. In addition to biodegradation due to bioaugmentation of Dhc, an EK-driven transport of chlorinated ethenes is observed in the clay, which accelerates cleanup of chlorinated ethenes from the anode side. Compared with conventional advection-based delivery, EK injection is significantly more effective for establishing microbial reductive dechlorination capacity in low-permeability soils"
Keywords:"Aluminum Silicates/*analysis Chloroflexi/genetics/metabolism Clay Electrochemistry Environmental Pollution *Environmental Restoration and Remediation Hydrocarbons, Chlorinated/*chemistry Hydrogen-Ion Concentration Lactates/chemistry Oxidation-Reduction Pe;"
Notes:"MedlineMao, Xuhui Wang, James Ciblak, Ali Cox, Evan E Riis, Charlotte Terkelsen, Mads Gent, David B Alshawabkeh, Akram N eng P42 ES017198/ES/NIEHS NIH HHS/ P42 ES017198-02/ES/NIEHS NIH HHS/ P42ES017198/ES/NIEHS NIH HHS/ Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Netherlands 2012/03/01 J Hazard Mater. 2012 Apr 30; 213-214:311-7. doi: 10.1016/j.jhazmat.2012.02.001. Epub 2012 Feb 8"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 16-11-2024