Title: | Effect of fatty acids on the beta-oxidation system and thioesterase of Lactococcus lactis subspecies lactis |
Address: | "School of Food Science and Engineering, Harbin Institute of Technology, 202 Haihe Road, Harbin, Heilongjiang 150090, China; College of Food Science, Northeast Agricultural University, 59 Gongbin Road, Harbin, Heilongjiang 150030, China. School of Food Science and Engineering, Harbin Institute of Technology, 202 Haihe Road, Harbin, Heilongjiang 150090, China. Electronic address: maying@hit.edu.cn" |
ISSN/ISBN: | 1525-3198 (Electronic) 0022-0302 (Linking) |
Abstract: | "The influence of fatty acids on the beta-oxidation system and thioesterase of Lactococcus lactis was investigated in this study. The results showed that fatty acids (C8:0-C16:0) significantly inhibited the growth of Lactococcus lactis, and laurate (C12:0) had the highest bactericidal effects. We detected the maximum activity of beta-oxidation at different incubation times (8, 12, and 18h) to be 6.460, 7.751, and 8.203, respectively, and the maximum activity of thioesterase at different incubation times (8, 12, and 18h) to be 19.498, 27.180, and 12.800, respectively. Fatty acids were seen to induce the beta-oxidation system and activity of thioesterase; decanoic acid (C10:0) and palmitic acid (C16:0) were also seen to induce the beta-oxidation system of Lactococcus lactis, but the induced ability was significantly different. Octanoic acid (C8:0) and palmitic acid (C16:0) were seen to induce thioesterase activity in Lactococcus lactis. When 1mM palmitic acid (C16:0) was added to M17 broth, the activity of thioesterase increased 5-fold after 2min; however, adding octanoic acid (C8:0) changed the activity little. Evidence showed that the ability to induce the beta-oxidation system and thioesterase activity was related to the fatty acids' chain lengths" |
Keywords: | 3-Hydroxyacyl CoA Dehydrogenases/*metabolism Anti-Bacterial Agents Decanoic Acids/pharmacology Fatty Acids/chemistry/pharmacology Ketones/metabolism Lactococcus lactis/*drug effects/*enzymology/growth & development Lauric Acids/pharmacology Oxidation-Redu; |
Notes: | "MedlineLi, Liang Ma, Ying eng 2013/03/07 J Dairy Sci. 2013 Apr; 96(4):2003-2010. doi: 10.3168/jds.2012-5996. Epub 2013 Feb 22" |