Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractContribution of Bacillus Isolates to the Flavor Profiles of Vanilla Beans Assessed through Aroma Analysis and Chemometrics    Next AbstractCharacterization of particulate and gaseous pollutants emitted during operation of a desktop 3D printer »

Insect Biochem Mol Biol


Title:De novo characterization of transcriptome and gene expression dynamics in epidermis during the larval-pupal metamorphosis of common cutworm
Author(s):Gu J; Huang LX; Gong YJ; Zheng SC; Liu L; Huang LH; Feng QL;
Address:"Guangdong Provincial Key Lab of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, 55 W. Zhongshan Ave., Guangzhou 510631, China"
Journal Title:Insect Biochem Mol Biol
Year:2013
Volume:20130622
Issue:9
Page Number:794 - 808
DOI: 10.1016/j.ibmb.2013.06.001
ISSN/ISBN:1879-0240 (Electronic) 0965-1748 (Linking)
Abstract:"Larval cuticle is degraded and replaced by the pupal counterpart during larval-pupal metamorphosis in the holometabolous insects. In addition to the extrinsic transformation, the epidermis goes through significant changes at molecular levels. To elucidate the intrinsic mechanism of epidermal metamorphosis, the dynamics of chitin content in the cuticle was examined in an important agricultural lepidopteran, the common cutworm, and the transcriptome was analyzed using Illumina sequencing technology. Gene expression profiles during the metamorphosis were further studied by both the digital gene expression (DGE) system and real-time quantitative PCR. The results showed that the chitin content decreased in prepupae and then increased in pupae. A total of 58 million sequencing reads were obtained and assembled into 70,346 unigenes. Over 9000 unigenes were identified to express differentially during the transformation process. As compared with the 6th instar feeding larvae, the most significant changes took place in the proteasome and metabolic pathways in prepupae and pupae, respectively. The cytochrome P450s, VHDLs, chitinase, serine protease and genes involved in sex pheromone biosynthesis changed their mRNA levels remarkably. Three chitinolytic enzymes (chitinase, beta-N-acetylglucosaminidase and chitin deacetylase) showed distinct mRNA expression patterns, the former two enzymes revealed the highest expression in prepupae, however the latter one showed its climax mRNA level in pupae. The gene expression patterns suggest that chitinase and beta-N-acetylglucosaminidase may be responsible for the degradation of larval cuticles, whereas chitin deacetylase may help to degrade the pupal counterparts. Gene expression dynamics also implied that the chitin of pupal cuticle might be formed by recycling of the degraded chitin of larval cuticle rather than through de novo synthesis. The 20E-induced nuclear receptors seem to be important factors regulating chitin metabolic enzymes during the cuticle remodeling. Our data provide a comprehensive resource for exploring the molecular mechanism of epidermal metamorphosis in insects"
Keywords:"Animals Chitin/genetics/metabolism Epidermis/growth & development/*metabolism *Gene Expression Regulation, Developmental Insect Proteins/*genetics/metabolism Larva/genetics/growth & development/*metabolism Molecular Sequence Data Pupa/genetics/growth & de;"
Notes:"MedlineGu, Jun Huang, Li-Xia Gong, Yan-Jun Zheng, Si-Chun Liu, Lin Huang, Li-Hua Feng, Qi-Li eng Research Support, Non-U.S. Gov't England 2013/06/26 Insect Biochem Mol Biol. 2013 Sep; 43(9):794-808. doi: 10.1016/j.ibmb.2013.06.001. Epub 2013 Jun 22"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 29-06-2024